1,725 research outputs found

    Algorithmic Bayesian Persuasion

    Full text link
    Persuasion, defined as the act of exploiting an informational advantage in order to effect the decisions of others, is ubiquitous. Indeed, persuasive communication has been estimated to account for almost a third of all economic activity in the US. This paper examines persuasion through a computational lens, focusing on what is perhaps the most basic and fundamental model in this space: the celebrated Bayesian persuasion model of Kamenica and Gentzkow. Here there are two players, a sender and a receiver. The receiver must take one of a number of actions with a-priori unknown payoff, and the sender has access to additional information regarding the payoffs. The sender can commit to revealing a noisy signal regarding the realization of the payoffs of various actions, and would like to do so as to maximize her own payoff assuming a perfectly rational receiver. We examine the sender's optimization task in three of the most natural input models for this problem, and essentially pin down its computational complexity in each. When the payoff distributions of the different actions are i.i.d. and given explicitly, we exhibit a polynomial-time (exact) algorithm, and a "simple" (11/e)(1-1/e)-approximation algorithm. Our optimal scheme for the i.i.d. setting involves an analogy to auction theory, and makes use of Border's characterization of the space of reduced-forms for single-item auctions. When action payoffs are independent but non-identical with marginal distributions given explicitly, we show that it is #P-hard to compute the optimal expected sender utility. Finally, we consider a general (possibly correlated) joint distribution of action payoffs presented by a black box sampling oracle, and exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria guarantee. We show that this result is the best possible in the black-box model for information-theoretic reasons

    An unusual cause of difficult weaning in a patient with newly diagnosed small cell lung cancer

    Get PDF
    AbstractWe describe a patient with acute respiratory insufficiency and difficult ventilator weaning in the ICU ward, leading to diagnosis of small cell lung cancer with superior vena cava superior syndrome. Bilateral vocal cord paralysis caused his respiratory distress and weaning difficulties. Thyroidectomy and neurological problems (such as Parkinson disease and Guillain Barré syndrome) are more common causes of bilateral vocal cord paralysis. Lung cancer patients are also at risk due to mediastinal invasion. The left recurrent laryngeal nerve is more prone to paralysis because of the typical anatomy. In contrary, bilateral vocal cord paralysis is rare and doesn't result in speech problems but rather breathing difficulties. Tracheostomy is the classic therapy, but laser cordectomy and Botulinum toxin injection in the laryngeal muscles are alternatives

    Anharmonicities of giant dipole excitations

    Get PDF
    The role of anharmonic effects on the excitation of the double giant dipole resonance is investigated in a simple macroscopic model.Perturbation theory is used to find energies and wave functions of the anharmonic ascillator.The cross sections for the electromagnetic excitation of the one- and two-phonon giant dipole resonances in energetic heavy-ion collisions are then evaluated through a semiclassical coupled-channel calculation.It is argued that the variations of the strength of the anharmonic potential should be combined with appropriate changes in the oscillator frequency,in order to keep the giant dipole resonance energy consistent with the experimental value.When this is taken into account,the effects of anharmonicities on the double giant dipole resonance excitation probabilities are small and cannot account for the well-known discrepancy between theory and experiment

    Fairly Allocating Contiguous Blocks of Indivisible Items

    Full text link
    In this paper, we study the classic problem of fairly allocating indivisible items with the extra feature that the items lie on a line. Our goal is to find a fair allocation that is contiguous, meaning that the bundle of each agent forms a contiguous block on the line. While allocations satisfying the classical fairness notions of proportionality, envy-freeness, and equitability are not guaranteed to exist even without the contiguity requirement, we show the existence of contiguous allocations satisfying approximate versions of these notions that do not degrade as the number of agents or items increases. We also study the efficiency loss of contiguous allocations due to fairness constraints.Comment: Appears in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    How harmonic is dipole resonance of metal clusters?

    Get PDF
    We discuss the degree of anharmonicity of dipole plasmon resonances in metal clusters. We employ the time-dependent variational principle and show that the relative shift of the second phonon scales as N4/3N^{-4/3} in energy, NN being the number of particles. This scaling property coincides with that for nuclear giant resonances. Contrary to the previous study based on the boson-expansion method, the deviation from the harmonic limit is found to be almost negligible for Na clusters, the result being consistent with the recent experimental observation.Comment: RevTex, 8 page

    Proof-theoretic Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets

    Full text link
    In the context of strategic games, we provide an axiomatic proof of the statement Common knowledge of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. Rationality here means playing only strategies one believes to be best responses. This involves looking at two formal languages. One is first-order, and is used to formalise optimality conditions, like avoiding strictly dominated strategies, or playing a best response. The other is a modal fixpoint language with expressions for optimality, rationality and belief. Fixpoints are used to form expressions for common belief and for iterated elimination of non-optimal strategies.Comment: 16 pages, Proc. 11th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA XI). To appea

    Double Giant Dipole Resonance in ^{208}Pb

    Get PDF
    Double-dipole excitations in ^{208}Pb are analyzed within a microscopic model explicitly treating 2p2h-excitations. Collective states built from such 2p2h-excitations are shown to appear at about twice the energy of the isovector giant dipole resonance, in agreement with the experimental findings. The calculated cross section for Coulomb excitation at relativistic energies cannot explain simultaneously the measured single-dipole and double-dipole cross sections, however.Comment: 7 pages, Latex, 5 postscript figure

    Recent Developments in NeuLAND Simulations

    Get PDF

    Anharmonic collective excitation in a solvable model

    Get PDF
    We apply the time-dependent variational principle, the nuclear field theory, and the boson expansion method to the Lipkin model to discuss anharmonicities of collective vibrational excitations. It is shown that all of these approaches lead to the same anharmonicity to leading order in the number of particles. Comparison with the exact solution of the Lipkin model shows that these theories reproduce it quite well.Comment: RevTex, 18 pages, 4 postscript figure
    corecore