49 research outputs found

    Assessment of Preoperative Liver Function in Patients with Hepatocellular Carcinoma - The Albumin-Indocyanine Green Evaluation (ALICE) Grade.

    Get PDF
    Most patients with hepatocellular carcinoma (HCC) have underlying liver disease, therefore, precise preoperative evaluation of the patient's liver function is essential for surgical decision making. We developed a grading system incorporating only two variables, namely, the serum albumin level and the indocyanine green retention rate at 15 minutes (ICG R15), to assess the preoperative liver function, based on the overall survival of 1868 patients with HCC who underwent liver resection. We then tested the model in a European cohort (n = 70) and analyzed the predictive power for the postoperative short-term outcome. The Albumin-Indocyanine Green Evaluation (ALICE) grading system was developed in a randomly assigned training cohort: linear predictor = 0.663 × log10ICG R15 (%)-0.0718 × albumin (g/L) (cut-off value: -2.20 and -1.39). This new grading system showed a predictive power for the overall survival similar to the Child-Pugh grading system in the validation cohort. Determination of the ALICE grade in Child-Pugh A patients allowed further stratification of the postoperative prognosis. This result was reproducible in the European cohort. Determination of the ALICE grade allowed better prediction of the risk of postoperative liver failure and mortality (ascites: grade 1, 2.1%; grade 2, 6.5%; grade 3, 16.0%; mortality: grade 1, 0%; grade 2, 1.3%; grade 3, 5.3%) than the previously reported model based on the presence/absence of portal hypertension. This new grading system is a simple method for prediction of the postoperative long-term and short-term outcomes

    Rapid intraoperative insulin assay: a novel method to differentiate insulinoma from nesidioblastosis in the pediatric patient

    Get PDF
    Introduction: Hyperinsulinism is the most common cause of recurrent and persistent hypoglycemia in infancy and childhood. Causes can include nesidioblastosis, pancreatic islet cell tumors such as insulinoma, and associations with multiple endocrine neoplasia syndromes. Although new, improved imaging techniques have allowed for more precise preoperative localization of insulinomas, the differentiation of nesidioblastosis and insulinoma, particularly in children, can be challenging. To improve intraoperative localization and confirmation of successful resection of insulinoma, a novel hormonal assay, the rapid intraoperative insulin assay, is reported for the first time in a pediatric patient. This intraoperative radioimmunoassay for insulin yields results within several minutes and confirms complete resection of insulinoma. Case description: We present a case of pancreatic insulinoma in a child with symptoms of severe hypoglycemia, causing seizures. The insulinoma was enucleated laparoscopically, and rapid intra-operative insulin assay used to determine the success of the procedure. Discussion and evaluation: This rapid intra-operative test provides a valuable adjunct for determining complete excision in complicated cases of recurrent or questionable insulinoma. Although not a common problem, for pediatric patients in whom the diagnosis is not clear, this test may provide a novel approach to confirming disease. Conclusion: We propose the use of this assay in facilitating intra-operative resection and confirmation of complete excision in pediatric patients. This population may especially benefit from this novel assay to confirm complete resection and to differentiate multiple etiologies of hyperinsulinism

    Subcellular Distribution of Mitochondrial Ribosomal RNA in the Mouse Oocyte and Zygote

    Get PDF
    Mitochondrial ribosomal RNAs (mtrRNAs) have been reported to translocate extra-mitochondrially and localize to the germ cell determinant of oocytes and zygotes in some metazoa except mammals. To address whether the mtrRNAs also localize in the mammals, expression and distribution of mitochondrion-encoded RNAs in the mouse oocytes and zygotes was examined by whole-mount in situ hybridization (ISH). Both 12S and 16S rRNAs were predominantly distributed in the animal hemisphere of the mature oocyte. This distribution pattern was rearranged toward the second polar body in zygotes after fertilization. The amount of mtrRNAs decreased around first cleavage, remained low during second cleavage and increased after third cleavage. Staining intensity of the 12S rRNA was weaker than that of the 16S rRNA throughout the examined stages. Similar distribution dynamics of the 16S rRNA was observed in strontium-activated haploid parthenotes, suggesting the distribution rearrangement does not require a component from sperm. The distribution of 16S rRNAs did not coincide with that of mitochondrion-specific heat shock protein 70, suggesting that the mtrRNA is translocated from mitochondria. The ISH-scanning electron microscopy confirms the extra-mitochondrial mtrRNA in the mouse oocyte. Chloramphenicol (CP) treatment of late pronuclear stage zygotes perturbed first cleavage as judged by the greater than normal disparity in size of blastomeres of 2-cell conceptuses. Two-third of the CP-treated zygotes arrested at either 2-cell or 3-cell stage even after the CP was washed out. These findings indicate that the extra-mitochondrial mtrRNAs are localized in the mouse oocyte and implicated in correct cytoplasmic segregation into blastomeres through cleavages of the zygote

    Doubly Uniparental Inheritance of Mitochondria As a Model System for Studying Germ Line Formation

    Get PDF
    BACKGROUND: Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS: We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE: In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans

    Axenic culture of Brachionus plicatilis using antibiotics

    Get PDF
    The rotifer Brachionus plicatilis culture is composed of complex microcosms including bacteria, protozoans, algae, and fungi. Previous studies reported methods to establish axenic rotifer cultures, but further refinement of these techniques is needed, for molecular biological research which requires pure culture to isolate nucleic acids from rotifers only. In order to render rotifer culture axenic, we tested five antibiotics: ampicillin (Amp), chloramphenicol (Cp), kanamycin (Km), nalidixic acid (Na), and streptomycin (Sm) at 30-100 μg/ml. Except for Cp, which reduces rotifer reproduction, all other antibiotics at the tested concentrations did not affect rotifer reproduction or show any toxic effects. A rotifer disinfection method was finally established by treating the resting eggs with 0.25% (w/v) sodium hypochlorite (NaOCl) for 3 min, washing with sterilized sea water, and then exposing the neonates to an Amp, Km, Na, and Sm mixture. Using four nutrient media, we confirmed that this protocol renders the rotifer culture bacterial and fungus free. The axenic rotifer culture generated here is useful not only for genetic analysis of Brachionus plicatilis, but for studying the rotifer life cycle without bacterial influence
    corecore