6,287 research outputs found
Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries
Context: Colliding wind binaries (CWBs) are thought to give rise to a
plethora of physical processes including acceleration and interaction of
relativistic particles. Observation of synchrotron radiation in the radio band
confirms there is a relativistic electron population in CWBs. Accordingly, CWBs
have been suspected sources of high-energy gamma-ray emission since the COS-B
era. Theoretical models exist that characterize the underlying physical
processes leading to particle acceleration and quantitatively predict the
non-thermal energy emission observable at Earth. Aims: We strive to find
evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR
70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling
identified these systems as the most favourable candidates for emitting
gamma-rays. We make a comparison with existing gamma-ray flux predictions and
investigate possible constraints. Methods: We used 24 months of data from the
Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to
perform a dedicated likelihood analysis of CWBs in the LAT energy range.
Results: We find no evidence of gamma-ray emission from any of the studied CWB
systems and determine corresponding flux upper limits. For some CWBs the
interplay of orbital and stellar parameters renders the Fermi-LAT data not
sensitive enough to constrain the parameter space of the emission models. In
the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out
some model predictions entirely and constrain theoretical models over a
significant parameter space. A comparison of our findings to the CWB eta Car is
made.Comment: 9 pages, 3 figure
High-energy particle transport in 3D hydrodynamic models of colliding-wind binaries
Massive stars in binary systems (as WR140, WR147 or Carinae) have long
been regarded as potential sources of high-energy -rays. The emission
is thought to arise in the region where the stellar winds collide and produce
relativistic particles which subsequently might be able to emit -rays.
Detailed numerical hydrodynamic simulations have already offered insight in the
complex dynamics of the wind collision region (WCR), while independent
analytical studies, albeit with simplified descriptions of the WCR, have shed
light on the spectra of charged particles. In this paper, we describe a
combination of these two approaches. We present a 3D-hydrodynamical model for
colliding stellar winds and compute spectral energy distributions of
relativistic particles for the resulting structure of the WCR. The hydrodynamic
part of our model incorporates the line-driven acceleration of the winds,
gravity, orbital motion and the radiative cooling of the shocked plasma. In our
treatment of charged particles we consider diffusive shock acceleration in the
WCR and the subsequent cooling via inverse Compton losses (including
Klein-Nishina effects), bremsstrahlung, collisions and other energy loss
mechanisms.Comment: 28 pages, 9 figures / accepted for publication in The Astrophysical
Journa
A candidate gamma-ray pulsar in the supernova remnant CTA 1
We present a detailed analysis of the high energy gamma-ray source 2EG
J0008+7307. The source has a steady flux and a hard spectrum, softening above 2
GeV. The properties of the gamma-ray source are suggestive of emission from a
young pulsar in the spatially coincident CTA 1 supernova remnant, which has
recently been found to have a non-thermal X-ray plerion. Our 95% uncertainty
contour around the >1 GeV source position includes the point-like X-ray source
at the centre of the plerion. We propose that this object is a young pulsar and
is the most likely counterpart of 2EG J0008+7307.Comment: Accepted for publication in MNRAS. 6 pages including four PS figures.
Uses mn.te
The redshift-dependence of gamma-ray absorption in the environments of strong-line AGN
The case of gamma-ray absorption due to photon-photon pair production of jet
photons in the external photon environment like accretion disk and broad-line
region radiation field of gamma-ray loud active galactic nuclei (AGN) that
exhibit strong emission lines is considered. I demonstrate that this ''local
opacity'', if detected, will almost unavoidably be redshift-dependent in the
sub-TeV range. This introduces non-negligible biases, and complicates
approaches for studying the evolution of the extragalactic background light
with contemporary GeV instruments like e.g. the Gamma-ray Large Area Space
Telescope (GLAST), etc., where the gamma-ray horizon is probed by means of
statistical analysis of absorption features (e.g. Fazio-Stecker relation, etc.)
in AGN spectra at various redshifts. It particularly applies to strong-line
quasars where external photon fields are potentially involved in gamma-ray
production.Comment: 19 pages, 5 figures; accepted for publication in Ap
Chasing the second gamma-ray bright isolated neutron star: 3EG J1835+5918/RX J1836.2+5925
The EGRET telescope aboard NASAs Compton GRO has repeatedly detected 3EG
J1835+5918, a bright and steady source of high-energy gamma-ray emission with
no identification suggested until recently. The long absence of any likely
counterpart for a bright gamma-ray source located 25 degrees off the Galactic
plane initiated several attempts of deep observations at other wavelengths. We
report on counterparts in X-rays on a basis of a 60 ksec ROSAT HRI image. In
order to conclude on the plausibility of the X-ray counterparts, we reanalyzed
data from EGRET at energies above 100 MeV and above 1 GeV, including data up to
CGRO observation cycle 7. The gamma-ray source location represents the latest
and probably the final positional assessment based on EGRET data. The X-ray
counterparts were studied during follow-up optical identification campaigns,
leaving only one object to be likely associated with the gamma-ray source 3EG
J1835+5918. This object, RX J1836.2+5925, has the characteristics of an
isolated neutron star and possibly of a radio-quiet pulsar.Comment: 5 pages, 3 figures. To appear in the Proceedings of the 270.
WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan.
21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper.
Proceedings are available as MPE-Report 27
Non-thermal high-energy emission from colliding winds of massive stars
Colliding winds of massive star binary systems are considered as potential
sites of non-thermal high-energy photon production. This is motivated merely by
the detection of synchrotron radio emission from the expected colliding wind
location. Here we investigate the properties of high-energy photon production
in colliding winds of long-period WR+OB-systems. We found that in the
dominating leptonic radiation process anisotropy and Klein-Nishina effects may
yield spectral and variability signatures in the gamma-ray domain at or above
the sensitivity of current or upcoming gamma-ray telescopes. Analytical
formulae for the steady-state particle spectra are derived assuming diffusive
particle acceleration out of a pool of thermal wind particles, and taking into
account adiabatic and all relevant radiative losses. For the first time we
include their advection/convection in the wind collision zone, and distinguish
two regions within this extended region: the acceleration region where spatial
diffusion is superior to convective/advective motion, and the convection region
defined by the convection time shorter than the diffusion time scale. The
calculation of the Inverse Compton radiation uses the full Klein-Nishina cross
section, and takes into account the anisotropic nature of the scattering
process. This leads to orbital flux variations by up to several orders of
magnitude which may, however, be blurred by the geometry of the system. The
calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to
yield predictions of their expected spectral and temporal characteristica and
to evaluate chances to detect high-energy emission with the current and
upcoming gamma-ray experiments. (abridged)Comment: 67 pages, 24 figures, submitted to Ap
- …
