241 research outputs found

    Kinematics of OB-associations and the new reduction of the Hipparcos data

    Full text link
    The proper motions of OB-associations computed using the old (Hipparcos 1997} and new (van Leeuwen 2007) reductions of the Hipparcos data are in a good agreement with each other. The Galactic rotation curve derived from an analysis of line-of-sight velocities and proper motions of OB-associations is almost flat in the 3-kpc neighborhood of the Sun. The angular rotation velocity at the solar distance is Omega_0=31 +/-1 km s-1 kpc-1. The standard deviation of the velocities of OB-associations from the rotation curve is sigma=7.2 km s-1. The distance scale for OB associations (Blaha & Humphreys 1989) should be shortened by 10-20%. The residual velocities of OB-associations calculated for the new and old reductions differ, on average, by 3.5 km s-1. The mean residual velocities of OB-associations in the stellar-gas complexes depend only slightly on the data reduction employed.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    Astrometric Positions and Proper Motions of 19 Radio Stars

    Full text link
    We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 19 radio stars in the International Celestial Reference Frame (ICRF). The positions of these stars were directly linked to the positions of distant quasars through phase referencing observations. The positions of the ICRF quasars are known to 0.25 mas, thus providing an absolute reference at the angular resolution of our radio observations. Average values for the errors in our derived positions for all sources were 13 mas and 16 mas in R.A. and declination respectively, with accuracies approaching 1-2 mas for some of the stars observed. Differences between the ICRF positions of the 38 quasars, and those measured from our observations showed no systematic offsets, with mean values of -0.3 mas in R.A. and -1.0 mas in declination. Standard deviations of the quasar position differences of 17 mas and 11 mas in R.A. and declination respectively, are consistent with the mean position errors determined for the stars. Our measured positions were combined with previous Very Large Array measurements taken from 1978-1995 to determine the proper motions of 15 of the stars in our list. With mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions approach those derived from Hipparcos, and for a few of the stars in our program, are better than the Hipparcos values. Comparing the positions of our radio stars with the Hipparcos catalog, we find that at the epoch of our observations, the two frames are aligned to within formal errors of approximately 3 mas. This result confirms that the Hipparcos frame is inertial at the expected level.Comment: 20 pages, 9 figures Accepted by the Astronomical Journal, 2003 March 1

    VLA+PT Astrometry of 46 Radio Stars

    Get PDF
    We have used the Very Large Array (VLA), linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 46 radio stars in the International Celestial Reference Frame (ICRF). Positions were obtained in the ICRF directly through phase referencing of the stars to nearby ICRF quasars whose positions are accurate at the 0.25 mas level. Radio star positions are estimated to be accurate at the 10 mas level, with position errors approaching a few milli-arcseconds for some of the stars observed. Our measured positions were combined with previous measurements taken from as early as 1978 to obtain proper motion estimates for all 46 stars with average uncertainties of ~1.7 mas/yr. We compared our radio star positions and proper motions with the Hipparcos Catalogue data, and find consistency in the reference frames produced by each data set on the 1-sigma level, with errors of ~2.7 mas per axis for the reference frame orientation angles at our mean epoch of 2003.78. No significant spin is found between our radio data frame and the Hipparcos Celestial Reference Frame (HCRF) with largest rotation rates of +0.55 and -0.41 mas/yr around the x and z axes, respectively, with 1-sigma errors of 0.36 mas/yr. Thus, our results are consistent with a non-rotating Hipparcos frame with respect to the ICRF.Comment: 29 pages, 8 figures, accepted for publication in the Astronomical Journa
    • …
    corecore