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7. Lake Systems 
Iñaki Arto, H. Boonman,  Iñigo Capellán-Pérez, T.G. Husby, Tati-
ana Filatova, Mikel González-Eguinob, Klaus Hasselmann, Dmitry 
V Kovalevsky, Anil Markandya, Saeed M Moghayer, L. Niamir, 
Meron Belai Tariku and Alexey Voinov  
Nature is often expected to respond to gradual changes in a 
smooth way. However, studies of lakes, coral reefs, oceans, 
forests and arid lands have shown that smooth change can 
be interrupted by sharp (or catastrophic) shifts to different 
regimes (Scheffer et al., 2001; Carpenter, 2003). One of the 
best-studied catastrophic shifts is the sudden loss of trans-
parency and vegetation observed in shallow lakes, i.e. lakes 
with a depth less than 3 meters, as a result of human activi-
ties. Initially shallow lakes have clear water and a rich sub-
merged vegetation. However, nutrient loading may change 
this. For instance nutrients arrive in the lake as a result of the 
use of artificial fertilizers on surrounding land; they are 
washed into the lake by rainfall.  

Due to heavy use of fertilizers, at some point lakes might flip 
from a clear state to a turbid state that is caused by a domi-
nance of phytoplankton. Lakes are hard to restore to the 
clear water state in the sense that the nutrient loads have to 
be reduced far below the level where the flip occurred be-
fore the lake returns to a clear state. In this case the lake is 
said to show hysteresis. In some cases the turbidity of the lake 
is even irreversible. The positive feedback through the effect 
on the submerged vegetation is one explanation for this hys-
teresis effect. The critical points at which the system flips 
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(shifts) in a way that is not instantly reversible (or irreversi-
ble) are called tipping points. 
The lake model that is used in this study gives a very simpli-
fied representation of these complex ecological feedback 
mechanisms that are active in a shallow lake. Indeed, the lake 
model in this study should be viewed as a metaphor for gen-
eral ecological systems with tipping points, thresholds, non-
linearities, and irreversibilities so that the analysis developed 
here will have a wider applicability (cf. Scheffer, 2009). 

Lake Dynamics 
The dynamics of a lake, which was described above, can be 
modeled as a single non-linear difference equation 

1 1( b) ( ) 1t t t tx u x h x� � � � �  
Here, xt is the concentration of phosphorus, one of the main 
nutrients, in the lake. Artificial fertilisers containing phos-
phorus are used on the fields surrounding the lake. The 
phosphorus is washed into the lake by rainfall, yields a net 
inflow, ut  of phosphorus. The parameter, b denotes the 
sedimentation rate at which phosphorus leaves the water 
column and enters the sediment at the bottom of the lake. 
The last term models the internal production of phosphorus 
in the lake, e.g. through re-suspension of the sediment, and 
is assumed to be an S-shape function that has its inflection 
point at the point,  

x = 1: 
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The exponent, q, the responsiveness of the lake, is proportional 
to the steepness of h(x)  at x = 1. Thus, steeper function h 
(resulting from higher q values) creates stronger hysteresis. 
For a constant pollution loading, ut = u  for all t, the fixed 
points of the lake are solutions of the equation 

� �       
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q
xu g x b x

x
  �

�  
which is illustrated for b = 0.6,  q = 2 and q = 4 in Fig. 7.1. 

 
Figure 7.1. Location of fixed points for constant pollution streams 
ut = u for all t, plotted for b= 0.6 , and for (a) weakly (q = 2) and 
(b) strongly responsive lakes (q = 4). Indicated are stable (solid) and 
unstable fixed points (dashed). 

For both values of q  there is a range of u-values such that 
there are multiple steady states. However, the range is bigger 
for q = 4 than for q = 2. If the system starts in a low pollu-
tion steady state, and if u is then raised very slowly past the 
first critical value it switches to a high pollution steady state. 
A small subsequent decrement of u will not move the system 
back to the clean branch of steady states. For this, the pollu-
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tion flow has to be lowered significantly, below the second 
critical value.  

There is a value, b = b*, such that for b < b* the lake can be 
trapped in the high pollution steady state of phosphorus. 
This happens if the first flip, which occurs at u =Cu, is irre-
versible. The critical value is b | 0.57 for q = 4  and b   0.5  
for  
q = 2  (see Fig. 7.2 for the case q = 4 ). In that case, only 
after a change in the value of b the lake can be restored to a 
clear state. 

The sedimentation parameter is set the sequel of this section, 
it is assumed that the b   0.6 so that the lake displays hyste-
resis but a flip to a low pollution steady state is reversible. 

 

 
Figure 7.2. Irreversibility; location of fixed points for constant pol-
lution streams ut = u  for all t, plotted for b   0.57 and q = 4. 
Indicated are stable (solid) and unstable fixed points (dashed). 
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Economics of lakes: optimal pollution management  
In the ecological literature, management of shallow lakes is 
mostly interpreted as preventing the lake to flip or, if it flips, 
as restoring the lake in its original state. However, in this 
study the economics of the problem is analyzed in the sense 
of the trade-offs between the utility of the agricultural activi-
ties, which are responsible for the release of phosphorus, 
and the utility of a clear water lake (cf. Maler et al., 2003). 
When the lake flips to a turbid state, the value of the ecolog-
ical services of the lake decreases, but there is a high level of 
agricultural activities. It depends, of course, on the relative 
weight attached to these welfare components whether it is 
better to keep the lake clear or to use it as a waste dump. 

Note that if it is better to keep the lake clear, it is very costly 
to let the lake flip first because of the hysteresis. The complexity 
of the lake optimal management problem derives from the 
non-linear dynamics of the lake that leads to a non-convex op-
timal control problem featuring several system parameters. 
The lake optimal management problems therefore have a 
rich structure that is the existence of tipping points. In such 
problems, depending on the values of these parameters, 
there may exist multiple steady states that are the long-run 
outcome of an optimal management policy. Also, the struc-
ture of optimal solutions may change if parameters are var-
ied. In this study the bifurcation analysis developed 
Moghayer (2012) is used to classify the qualitative character-
istics of the set of optimal solutions for different values of 
the model parameters. 

In the lake pollution management problem, a social manager 
has to weigh the interest of the farmers that derive income 
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from the use of artificial fertilizers against that of the lake 
users that suffer from pollution damage to the lake. Follow-
ing Maler et al. (2003), the social utility functional is modelled 
as 

� �2
1

1
log t

t tJ u cx e U
f

�
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Here, c is the social preference parameter, and U > 0 the 
discount rate. The social manager tries to optimally manage 
the phosphorus pollution stream 

1{u }t t
f
  u  

that originates from the use of artificial fertilisers given that 
the concentration of xt phosphorus in the lake follows the 
lake dynamic. The optimization problem is to maximize 
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subject to the lake dynamic 
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State space and control space are given as X = U = (0,f), 
respectively. 

The discrete Pontryagin function is 

2log (1 b) x
1
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 � � � � �¨ ¸�© ¹ , 
Where y is the co-state. The necessary condition 
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Solving for u  yields that u = -1/y.  Substituting out u, the 
discrete Hamilton function is obtained as 
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The necessary conditions read as 
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Solving the second equation for yt and substituting into the 
first yields the phase map, which 

determines the state-costate dynamics by: 

1 1 1z ( , ) ( , ) (z )t t t t t tx y x yM M� � �    
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Solution structure and qualitative changes  
In the rest of the section, the value of U  is fixed to U  = 
0.03. For b   0.6  and q = 4 , in Fig. 7.3(f) fixed points and 
their stable and unstable manifolds are plotted for a range of 
values of the cost parameter, c ; for all these values, the 
phase map has two saddle fixed points Z_  and Z+  . 

Recall that the stable manifold  of a fixed point z , 
s

zW , is 
the set of all points whose forward iterates converge to z : 

2{z :  lim  (z) }s t
z t

W zM
o�f

 �  �
 

Analogously the unstable manifold of z , 
u

zW , consists of 

the points backward asymptotic to 
s

zW : 
2{z :  lim  (z) }u t

z t
W zM

o�f
 �  �

 
In Moghayer and Wagener (2008) it is shown that for every 

0x ��  , the problem to optimise  
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subject to the lake dynamic 
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has a solution. Moreover, the state-co-state trajectory of 

such a solution is either on 
s

zW
� or 

s
zW
� . 
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Fig. 7.3(d) shows the bifurcation diagram of the lake system 
in the (b,c)-parameter space. The dashed curve represents 
saddle-node bifurcations, separating the region of values of 
the parameters for which the phase map has a fixed point 
from the region of multiple fixed points. Solid lines indicate 
indifference-attractor bifurcation curves, separating three 
parameter regions: low pollution region for which the clean 
steady state is globally optimal, (ii) the high pollution region for 
which the turbid steady state is globally optimal, and (iii) the 
dependent on the initial state region for which both the clean 
steady state and turbid steady state are locally optimal. 

For the values of the physical parameters b and economic 
parameter c in the unique equilibrium region the phase map M   
has a unique fixed point. This is a saddle, see Fig. 7.3(a). The 
long run pollution level depends then on the values of the 
parameters c and b, changing within the region. If the pair  
(b, c) corresponds to a point of the dependent on the initial state 
region, the phase map M has always two saddle fixed points 
characterized by respectively low pollution and high pollu-
tion (see Fig. 7.3(c))Figure 7.3. The clear state of the lake 
corresponds to a high level of water services and a low level 
of agricultural activities, whereas the turbid state corre-
sponds to a high level of agricultural activities and a low 
level of water services. Depending on the initial pollution 
load, the social planner steers the lake to the clear or to the 
turbid steady state. If the pair (b, c) is in the low pollution re-
gion the optimal policy steers the lake to the clean steady 
state independently of the initial state of the lake; the clear 
state of the lake is globally optimal (see Fig. 7.3(a)Figure 7.3. 
If (b, c) is in the high pollution region, see Fig. 7.3(e &f), the 
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optimal orbit lies on the stable manifold of the polluted 
equilibrium. Regardless of the initial state of the lake, the 
optimal policy steers the lake to the turbid state, that is the 
turbid steady state is globally optimal.  

For a pair (b, c) in the dependent on the initial state region, there 
exist an indifference threshold, see Fig. 7.3(c)). If the initial 
state is below the threshold then the clean steady state is 
optimal, whereas if the initial state is above the threshold 
then the turbid steady state is optimal. Therefore, for a pair 
(b, c)  in the dependent on the initial state region the lake is 
steered to the clear state only if it is initially not very pollut-
ed, otherwise it is steered to the turbid state. Note that at the 
indifference threshold, two different policies are radically differ-
ent and non-equivalent, one corresponding to high agricul-
tural activity, high pollution and convergence to the polluted 
steady state, whereas the other is characterized by lower pol-
lution and convergence to clear steady state. 

Conclusion 
In this section, outcomes of the lake pollution problem and 
the long-term interest conflicts of the lake users have been 
presented, in the context of dynamic social planning. A 
characteristic feature of this problem, and of pollution prob-
lems in general, is the qualitative dichotomy in possible out-
comes in the presence of tipping points: the lake (or the 
ecosystem, or the climate) ends up in either a clean or in a 
polluted state, both of which, if attained, is stablised by some 
kind of feedback mechanism.  

This results to a qualitative aspect in socio-economic out-
comes: the decision maker has to decide for or against pro-
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duction, for or against conserving the ecosystem. This quali-
tative distinction between the possible socially optimal out-
comes enables us 

to present the outcome of the analyses in the form of a bi-
furcation diagram presented in the last subsection, which 
gives a graphical overview of the qualitative characteristics of 
the solutions, depending on the parameters of the problem. 
The most critical region in these bifurcation diagrams is the 
"history dependent" region: in these cases, neglect by an 
actual decision maker that allows the ecosystem to flip can 
lead to large irrecoverable welfare losses.  

The lake pollution problem is a prototype of a non-linear 
ecological-economic problem with multiple equilibria, 
thresholds, and irreversibility. Indeed, lake system, as men-
tioned in Scheffer (2009) is  “a subtle twist on the Greek’s 
view of our mind that is Mikos-Kosmos reflecting the entire 
world”. It is also extensive enough to harbor many scales of 
complexity therefore  served our purpose  to present it as an  
illustration example that covers most of the definition, con-
cepts and notions which were discussed in the previous sec-
tions of this report.  
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Figure 7.3. Plot (d) shows the bifurcation diagram of the lake system. The 
dashed curve represents saddle-node bifurcations, separating the region of values of 
the parameters for which the phase map has a fixed point from the region of mul-
tiple fixed points. Solid lines indicate indifference-attractor bifurcation curves Sol-
id lines indicate stable manifolds, dotted lines unstable manifolds; optimal solu-
tions are marked by thick lines; the vertical line through the indifference threshold 
is dashed. At the top of the graph, the optimal dynamics are indicated; attractors 
are marked by a circle, the indifference threshold by a diamond. 


