965 research outputs found

    An Invitation to Higher Gauge Theory

    Get PDF
    In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a 'tangent 2-group', which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an 'inner automorphism 2-group', which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an 'automorphism 2-group', which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a 'string 2-group'. We also touch upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum Gravity and Quantum Geometry at the 2009 Corfu Summer Institut

    Quantum Geometry and Black Hole Entropy

    Get PDF
    A `black hole sector' of non-perturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large non-rotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-Hawking formula S = A/4*l_p^2. With the same choice of the Immirzi parameter, this result also holds for black holes carrying electric or dilatonic charge, which are not necessarily near extremal.Comment: Revtex, 8 pages, 1 figur

    LL_\infty-Algebras of Classical Field Theories and the Batalin-Vilkovisky Formalism

    Get PDF
    We review in detail the Batalin-Vilkovisky formalism for Lagrangian field theories and its mathematical foundations with an emphasis on higher algebraic structures and classical field theories. In particular, we show how a field theory gives rise to an LL_\infty-algebra and how quasi-isomorphisms between LL_\infty-algebras correspond to classical equivalences of field theories. A few experts may be familiar with parts of our discussion, however, the material is presented from the perspective of a very general notion of a gauge theory. We also make a number of new observations and present some new results. Most importantly, we discuss in great detail higher (categorified) Chern-Simons theories and give some useful shortcuts in usually rather involved computations.Comment: v3: 131 pages, minor improvements, published versio

    Static interactions and stability of matter in Rindler space

    Full text link
    Dynamical issues associated with quantum fields in Rindler space are addressed in a study of the interaction between two sources at rest generated by the exchange of scalar particles, photons and gravitons. These static interaction energies in Rindler space are shown to be scale invariant, complex quantities. The imaginary part will be seen to have its quantum mechanical origin in the presence of an infinity of zero modes in uniformly accelerated frames which in turn are related to the radiation observed in inertial frames. The impact of a uniform acceleration on the stability of matter and the properties of particles is discussed and estimates are presented of the instability of hydrogen atoms when approaching the horizon.Comment: 28 pages, 4 figure

    On the relation between the connection and the loop representation of quantum gravity

    Get PDF
    Using Penrose binor calculus for SU(2)SU(2) (SL(2,C)SL(2,C)) tensor expressions, a graphical method for the connection representation of Euclidean Quantum Gravity (real connection) is constructed. It is explicitly shown that: {\it (i)} the recently proposed scalar product in the loop-representation coincide with the Ashtekar-Lewandoski cylindrical measure in the space of connections; {\it (ii)} it is possible to establish a correspondence between the operators in the connection representation and those in the loop representation. The construction is based on embedded spin network, the Penrose graphical method of SU(2)SU(2) calculus, and the existence of a generalized measure on the space of connections modulo gauge transformations.Comment: 19 pages, ioplppt.sty and epsfig.st

    On the Constant that Fixes the Area Spectrum in Canonical Quantum Gravity

    Get PDF
    The formula for the area eigenvalues that was obtained by many authors within the approach known as loop quantum gravity states that each edge of a spin network contributes an area proportional to sqrt{j(j+1)} times Planck length squared to any surface it transversely intersects. However, some confusion exists in the literature as to a value of the proportionality coefficient. The purpose of this rather technical note is to fix this coefficient. We present a calculation which shows that in a sector of quantum theory based on the connection A=Gamma-gamma*K, where Gamma is the spin connection compatible with the triad field, K is the extrinsic curvature and gamma is Immirzi parameter, the value of the multiplicative factor is 8*pi*gamma. In other words, each edge of a spin network contributes an area 8*pi*gamma*l_p^2*sqrt{j(j+1)} to any surface it transversely intersects.Comment: Revtex, 7 pages, no figure

    Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity

    Get PDF
    In this work we investigate the canonical quantization of 2+1 gravity with cosmological constant Λ>0\Lambda>0 in the canonical framework of loop quantum gravity. The unconstrained phase space of gravity in 2+1 dimensions is coordinatized by an SU(2) connection AA and the canonically conjugate triad field ee. A natural regularization of the constraints of 2+1 gravity can be defined in terms of the holonomies of A+=A+ΛeA+=A + \sqrt\Lambda e. As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection Aλ=A+λeA_{\lambda}=A+\lambda e on the kinematical Hilbert space of loop quantum gravity. The holonomy operator associated to a given path acts non trivially on spin network links that are transversal to the path (a crossing). We provide an explicit construction of the quantum holonomy operator. In particular, we exhibit a close relationship between the action of the quantum holonomy at a crossing and Kauffman's q-deformed crossing identity. The crucial difference is that (being an operator acting on the kinematical Hilbert space of LQG) the result is completely described in terms of standard SU(2) spin network states (in contrast to q-deformed spin networks in Kauffman's identity). We discuss the possible implications of our result.Comment: 19 pages, references added. Published versio

    Matrix Elements of Thiemann's Hamiltonian Constraint in Loop Quantum Gravity

    Get PDF
    We present an explicit computation of matrix elements of the hamiltonian constraint operator in non-perturbative quantum gravity. In particular, we consider the euclidean term of Thiemann's version of the constraint and compute its action on trivalent states, for all its natural orderings. The calculation is performed using graphical techniques from the recoupling theory of colored knots and links. We exhibit the matrix elements of the hamiltonian constraint operator in the spin network basis in compact algebraic form.Comment: 32 pages, 22 eps figures. LaTeX (Using epsfig.sty,ioplppt.sty and bezier.sty). Submited to Classical and Quantum Gravit
    corecore