1,064 research outputs found

    Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials

    Full text link
    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or \Pi) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to arbitrary form of incident waves. The \Pi-scheme is fundamentally different than major optical amplification schemes. It does not require gain medium, interaction with phonons, or any nonlinear medium. The \Pi-scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making 'magical' metamaterials from scratch.Comment: Main text, 8 pages with 4 figures; supplemental material, 21 pages with 21 figure

    Faithful qubit distribution assisted by one additional qubit against collective noise

    Full text link
    We propose a distribution scheme of polarization states of a single photon over collective-noise channel. By adding one extra photon with a fixed polarization, we can protect the state against collective noise via a parity-check measurement and post-selection. While the scheme succeeds only probabilistically, it is simpler and more flexible than the schemes utilizing decoherence-free subspace. An application to BB84 protocol through collective noise channel, which is robust to the Trojan horse attack, is also given.Comment: 4 pages, 3 figures; published version in Phys. Rev. Let

    Photonic multipartite entanglement conversion using nonlocal operations

    Full text link
    We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the GHZ and symmetric Dicke state. We also show how the gate can be incorporated into extended graph state networks, and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.Comment: 10 pages, 6 figures, correction of reference list, add Journal ref. and DO

    Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking

    Full text link
    We report the experimental demonstration of a transmission scheme of photonic qubits over unstabilized optical fibers, which has the plug-and-play feature as well as the ability to transmit any state of a qubit, regardless of whether it is known, unknown, or entangled to other systems. A high fidelity to the noiseless quantum channel was achieved by adding an ancilla photon after the signal photon within the correlation time of the fiber noise and by performing quantum parity checking. Simplicity, maintenance-free feature and robustness against path-length mismatches among the nodes make our scheme suitable for multi-user quantum communication networks.Comment: 8 pages, 4 figures; published in New J. Phys. and selected in IOP Selec

    Kraus representation of damped harmonic oscillator and its application

    Full text link
    By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect, modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra solution. As examples and applications, we first give a Kraus representation of a single qubit whose computational basis states are defined as bosonic vacuum and single particle number states. We further discuss the environment effect on qubits whose computational basis states are defined as the bosonic odd and even coherent states. The environment effects on entangled qubits defined by two different kinds of computational basis are compared with the use of fidelity.Comment: 9 pages, 3 figure

    Magnetic resonance imaging of the quadriceps fat pad oedema pattern in relation to patellofemoral joint pathologies

    Get PDF
    Purpose: Quadriceps fat pad is located posterior to the quadriceps tendon. Increased signal intensity of this fat pad is seen on routine knee magnetic resonance imaging (MRI) examinations, but the exact mechanism and related pathologies are not clear. In this study we aimed to evaluate the relationship between MRI signal intensity and morphological features of quadriceps fat pad, as well as various pathologies of the patellofemoral joint. Material and methods: Sixty-one knees with quadriceps fat pad oedema out of 457 knee MRI examinations were included. Quadriceps fat pad signal intensity, dimensions, posterior indentation, and various parameters related to patellofemoral joint such as trochlear facet asymmetry, trochlear depth and sulcus angle, and the Insall-Salvati ratio were evaluated. Results: There was no statistically significant correlation between quadriceps fat pad oedema intensity and its dimensions, but it was significant when compared to posterior indentation. There was no correlation between fat pad oedema and each of the pathologies. However, there was a significant correlation between the presence of fat pad oedema and the presence of at least one of the pathologies related to patellofemoral joint. Conclusions: Quadriceps fat pad oedema detected in MRI examinations should warn the radiologist against the presence of various pathologies related to the patellofemoral joint

    Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect

    Full text link
    We report direct evidence of the bosonic nature of surface plasmon polaritons (SPPs) in a scattering-based beamsplitter. A parametric down-conversion source is used to produce two indistinguishable photons, each of which is converted into a SPP on a metal-stripe waveguide and then made to interact through a semi-transparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel experiment, we measure a coincidence dip with a visibility of 72%, a key signature that SPPs are bosons and that quantum interference is clearly involved.Comment: 5 pages, 3 figure

    Quantum random number generation using an on-chip nanowire plasmonic waveguide

    Full text link
    Quantum random number generators employ the inherent randomness of quantum mechanics to generate truly unpredictable random numbers, which are essential in cryptographic applications. While a great variety of quantum random number generators have been realised using photonics, few exploit the high-field confinement offered by plasmonics, which enables device footprints an order of magnitude smaller in size. Here we integrate an on-chip nanowire plasmonic waveguide into an optical time-of-arrival based quantum random number generation setup. Despite loss, we achieve a random number generation rate of 14.4 Mbits/s using low light intensity, with the generated bits passing industry standard tests without post-processing. By increasing the light intensity, we were then able to increase the generation rate to 41.4 Mbits/s, with the resulting bits only requiring a shuffle to pass all tests. This is an order of magnitude increase in the generation rate and decrease in the device size compared to previous work. Our experiment demonstrates the successful integration of an on-chip nanoscale plasmonic component into a quantum random number generation setup. This may lead to new opportunities in compact and scalable quantum random number generation.Comment: 10 pages, 3 figures, appendi
    corecore