28 research outputs found

    Contribution of heme oxygenase 2 to blood pressure regulation in response to swimming exercise and detraining in spontaneously hypertensive rats

    Get PDF
    Background: We aimed to determine the effects of exercise followed by detraining on systolic blood pressure (SBP), heme oxygenase 2 (HO-2) expression, and carboxyhemoglobin (COHb) concentration in spontaneously hypertensive rats (SHR) to explain the role of carbon monoxide (CO) in this process. Material/Methods: Animals were randomized into exercised and detrained groups. Corresponding sedentary rats were grouped as Time 1–2. Swimming of 60 min/5 days/week for 10 weeks was applied. Detraining rats discontinued training for an additional 5 weeks. Gene and protein expressions were determined by real-time PCR and immunohistochemistry. Results: Aorta HO-2 histological scores (HSCORE) of hypertensive rats were lower, while SBP was higher. Swimming caused enhancement of HO-2 immunostaining in aorta endothelium and adventitia of SHR. Exercise induced elevation of blood COHb index in SHR. Synchronous BP lowering effect of exercise was observed. HO-2 mRNA expression, HSCORE, and blood COHb index were unaltered during detraining, while SBP was still low in SHR. Conclusions: CO synthesized by HO-2 at least partly plays a role in SBP regulation in the SHR-and BP-lowering effect of exercise. Regular exercise with short-term pauses may be advised to both hypertensives and individuals who are at risk. © Med Sci Monit

    Impaired Hemorheology in Exacerbations of COPD

    Get PDF
    Background. Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation. Cardiovascular-related comorbidities are established to contribute to morbidity and mortality especially during exacerbations. The aim of the current study was to determine alterations in hemorheology (erythrocyte aggregation, deformability) in newly diagnosed COPD patients and their response to medical treatment and to compare with values of COPD patients with exacerbations. Materials and Methods. The study comprised 13 COPD patients, 12 controls, and 16 COPD patients with exacerbations. The severity of COPD was determined according to Global Initiative for Chronic Obstructive Lung Disease guidelines. Red blood cell (RBC) deformability and aggregation were measured by an ektacytometer. Results. RBC deformability of COPD patients with exacerbations was decreased compared to the other groups. Erythrocyte aggregation and plasma fibrinogen of COPD patients determined during exacerbations were higher than control. Conclusion. Decreased RBC deformability and increased aggregation associated with exacerbations of COPD may serve as unfavorable mechanisms to worsen oxygenation and thus clinical symptoms of the patient. Treatment modalities that modify rheological parameters might be beneficial. © 2017 Erhan Ugurlu et al

    Determination of the pathways in pontential muscle damage and regeneration in response to swimming exercise in different times

    No full text
    Egzersizin iskelet kaslarına yararlı etkileri olduğunun bilinmesine rağmen, bu süreçte görev alan sinyal iletim yolakları ve yüzme egzersizine yanıt olarak zamana bağlı kas hasar ve rejenerasyon süreçleri aydınlatılamamıştır. Bu çalışmada, farelerde akut ve uzun süreli yüzme egzersizlerine cevaben erken ve geç dönem iskelet kası hasar ve rejenerasyonu ile bunlara aracılık eden sinyal iletim yolaklarının ortaya çıkarılması amaçlanmıştır. 8-12 haftalık erişkin erkek fareler kontrol ve yüzme grubu olarak 2'ye ayrılmıştır. Egzersiz grupları kendi içlerinde akut ve kronik olarak bölündükten sonra her biri egzersizi takiben deneyin sonlandırılmasına kadar geçecek zaman açısından (3, 24 saat) tekrar 2'ye ayrılmıştır. Akut yüzme egzersizi 30 dk, tek seans; kronik yüzme egzersizi 5 gün/hafta, 6 hafta, 30 dk/gün; olacak şekilde uygulanmıştır. Farelerde alınan kan örneklerinden plazma kreatin kinaz (CK) aktivitesi ticari kit aracılığıyla ölçülmüştür. Gastrocnemius-soleus kaslarından histolojik olarak kas hasar ve rejenerasyonu değerlendirilmiştir. Kas örneklerinden izole edilen RNA’lar ile Whole-transkriptom analizi gerçekleştirilmiş ve sonrasında verilerin doğrulanması amacı ile gerçek-zamanlı PCR yöntemi kullanılmıştır. Egzersiz gruplarında kas hasarı yüzdesi, H-skoru ve lökosit infiltrasyonu kontrole göre yüksek olarak bulunmuştur. Ancak; akut 3 saat, akut 24 saat ve kronik 3 saat gruplarındaki artışlar istatistiksel olarak önemli düzeydeyken kronik 24 saat grubunda her üç parametredeki artış istatistiksel olarak önemli düzeye ulaşmamıştır. Plazma CK aktivitesinde istatistiksel olarak önemli bir farklılık saptanmamıştır. Whole transkriptom analizi sonuçlarına göre tüm egzersiz gruplarında Car3, Neb, Obscn, Ttn, Igfbp5, Igfbp7, Gsk3β ve Usp2 genlerinin kontrole göre down-regüle olduğu tespit edilmiştir. Whole-transkriptom analizinde en dramatik ekspresyon değişimleri gözlemlenen 3 gene ait veriler gerçek-zamanlı kantitatif PCR yöntemi ile doğrulanmıştır. Bulgular eşliğinde literatürden yararlanılarak yüzme egzersizlerine cevaben ifadeleri değişen hedef sinyal iletim yolakları çizilmiştir. Veriler, uygulanan egzersiz protokollerinin m. gastrocnemius-soleus kas kompleksinde kas hasarına sebep olduğunu ve miyofibrilogenezi uyardığını göstermektedir. Örnekler egzersizleri takiben 3. ve 24. saatlerde alınmış; ancak bu süreler miyofibrilogenez gelişimi için yeterli olmamıştır.Although exercise is known to have beneficial effects on skeletal muscles, signaling pathways involved in this process and time-dependent muscle damage and regeneration processes in response to swimming exercise have not been elucidated. The aim of this study was to investigate early, late skeletal muscle damage, regeneration and the signaling pathways involved in response to acute, prolonged swimming exercises. 8-12 weeks old male mice were divided as control, swimming. Each exercise group was further divided in terms of time (3, 24 hours) passed from the last exercise session till the end of the experiment. Acute exercise was applied as 30 min, one session, chronic group swam 5 days/week, 6 weeks, 30 min/day. Plasma creatine kinase (CK) activity was measured by a kit. Muscle damage and regeneration of gastrocnemius-soleus muscles were evaluated histologically. Whole-genome gene expression analysis was applied to total RNA samples isolated from mice gastrocnemius-soleus muscle complexes. Quantitative real-time PCR was used to validate the microarray data. Percentage of muscle damage, H-score, leukocyte infiltration were higher in exercise groups compared to control. Increases in acute 3 hour, acute 24 hour, chronic 3 hour groups were statistically signifficant, in chronic 24 hour group wasn’t significant. No alteration was observed in plasma CK activity. Car3, Neb, Obscn, Ttn, Igfbp5, Igfbp7, Gsk3β and Usp2 were downregulated in all exercise groups compared to control. Expression changes of 3 genes which demonstrated most dramatic expression changes in whole-transcriptome analysis were confirmed by real-time quantitative PCR. Based on the findings and literature, the signaling pathways involved in skeletal muscle damage and regeneration in response to swimming exercise were drawn. The results demonstrate that, swimming exercise causes muscle damage and myogenesis. Samples were taken at 3 and 24 hours following the exercises; however, these times were not sufficient for the development of myofibrilogenesis

    Acute effects of continuous and intermittent aerobic exercises on hemorheological parameters: A pilot study

    No full text
    BACKGROUND: Acute hemorheological responses to different types of aerobic exercises have never been compared in a single study in healthy people.OBJECTIVE: We aimed to compare acute effects of high intensity intermittent exercise (HIIE) and moderate intensity continuous exercise (MICE) on hemorheological parameters, in healthy young subjects.METHODS: A total of 34 sedentary young adults (12 males, 22 females) with a mean age of 20.0±2.1 years were randomly assigned to HIIE, MICE or non-exercise groups. MICE exercised at the power corresponding to 50% of heart rate reserve (HRR) continuously for 25 min. HIIE exercised at the power corresponding to 100% of HRR for 30 s followed by 30 s rest for 25 min. The non-exercise group rested. Blood samples were collected before and after exercise and studied for blood count, whole blood viscosity (WBV), plasma viscosity (PV) and red blood cell (RBC) elongation at nine different shear stresses.RESULTS: WBV, PV, RBC elongation of MICE and HIIE groups were not found to be statistically different from each other or from the non-exercise group. Compared to the non-exercise group, there was a significant increase in white blood cell (WBC) and RBC counts in the MICE group.CONCLUSIONS: Different types of aerobic exercises, namely MICE, HIIE are not different from each other in terms of hemorheological parameters immediately after exercise. © 2014-IOS Press and the authors

    Apelin-induced hemorheological alterations in DOCA-salt hypertensive rats

    No full text
    Apelin is a hypotensive peptide. Red blood cell (RBC) deformability and aggregation were previously demonstrated to be altered in various hypertension (HT) models. In the present study, we investigated possible alterations in RBC deformability and aggregation in response to apelin in DOCA-salt hypertensive rats. Rats were randomly divided into 4 groups: Control (C), Hypertension (HT), Apelin, and Apelin + Hypertension (Apelin + HT). HT was induced by injection of DOCA-salt (25 mg/kg, s.c.) twice weekly for 4 weeks, whereas apelin was administered (200 μg/kg i.p.) for 17 days. RBC deformability and aggregation were determined using an ektacytometer. Blood pressure was monitored using a tail cuff system. Systolic blood pressure was decreased in the Apelin and Apelin + HT groups and increased in the HT group. RBC deformability was not significantly altered in the HT group. Apelin administration induced a statistically significant increase in RBC deformability in control animals, whereas erythrocytic deformability in the Apelin + HT group was decreased compared to the Apelin group. RBC aggregation of hypertensive animals was reduced compared to controls. Apelin administration induced increased RBC aggregation in hypertensive rats. Our results showed favorable effects of apelin on RBC deformability in control animals, but not in hypertensive rats. © 2014 - IOS Press
    corecore