27 research outputs found

    Physicochemical and geotechnical properties of an ash-slag mixture deposited on a landfill in terms of its use in engineering

    Get PDF
    Coal combustion ash-slag mixtures have been deposited in landfills in Poland for decades. At the same time, there is a shortfall in the amount of available materials related to the construction and modernisation of transportation infrastructure. Thus, a typical landfill of a power station was chosen and the aim of the study was to assess the suitability of an ash-slag landfill mixture for construction engineering purposes. The following physicochemical analyses were conducted: pH, specific electrical conductivity and determination of the leachability of basic (Ca, Na, K and Mg) and trace elements (Cd, Pb, Cr, Zn and Cu). The content of selected basic and trace elements were determined in the eluates by FAAS and standard methods were applied for geotechnical analyses. The most likely conditions were assumed to the model. The mixture will not jeopardize surface water quality in terms of the concentrations of basic, hazardous or priority elements. The content of these elements also does not exceed permissible concentrations for groundwater. The conductance and pH of the eluates are in compliance with current laws. The solid mixture has favourable geotechnical parameters which are significantly dependent on moisture content. The slope stability calculations for embankments created from the mixture at optimum moisture content and high compaction (Is≥ 0.95) indicate that they will be stable even in the case of high gradients (1:1.5). The slopes will be unstable in conditions of submersion, which should not occur if we assume the embankment will be used for passive flood protection. The mixture is particularly suitable for the purposes of earth structures, provided that they are isolated from water

    The impact of the combustion waste landfill of the Skawina Power Plant on selected elements of the agricultural production area

    Get PDF
    Field observations and interviews with residents of Kopanka, Ochodza and Borek Szlachecki villages indicate that the agricultural production area located near the combustion waste landfill is negatively affected. Two distinct phenomena are observed: increased dust concentration in the air and excessive soil moisture or even flooding. The aim of the study was to assess whether and to what degree the landfill affects the content of the trace elements Cd(II), Pb(II), Zn(II) and Cu in the soil and plants of the adjoining agricultural production areas. The content of Cd(II), Pb(II), Zn(II) and Cu in the soil of the studied area was within the acceptable norms specified in the regulation of the Ministry of the Environment (Dz. U. 2002 nr 165, poz. 1359). In the herbaceous vegetation growing at sampling points W150, E150, E100 and N100, the acceptable level of Cd(II) specified in the regulation of the Ministry of Agriculture and Rural Development exceeded the norms (Dz. U. 2012 poz. 203). In turn, all the plant samples Pb(II) showed acceptable levels. The content of Zn(II) and Cu in the plant material meets the criteria for fodder proposed by IUNG (Kabata-Pendias et al. 1993). The high phytoaccumulation indices for Cd(II) and Zn(II) in the plant material may be due to dust fall containing metals. However, without precise quantitative and qualitative measurements of dust fall, it is difficult to ascertain to what extent this is caused by migration from the landfill and to what extent it is a result of deposits of pollutants from other sources

    Lead and iron contents in parsley being cultivated in the area of Chrzanów geochemical anomaly

    Get PDF
    Selected research polygon is both a geochemical anomaly and suburban area (Krakow City & Upper Silesia agglomeration). The inhabitants here have detached houses with gardens of one or two acres size, where “home-made”, fresh, low-processed food could be produced. The anomaly is reflected in high values of heavy metals contents, especially cadmium, lead and zinc, in the soils of the region. This is the result of both natural and anthropogenic factors. The purpose of the paper was to evaluate lead and iron contents in roots and leaves of parsley being cultivated in Trzebinia Commune, which is located in the area. Considering , there is a positive geochemical anomaly, the lead contents in soil were low – the average value was 88.67 mg*kg-1 d.m. and only two contents – 218.98 and 119.35 exceeded 100 mg*kg-1d.m. From the other hand the lead contents in parsley roots were high, many times higher than the allowable values. The lead contents in parsley leaves were also high. Phytoaccumulation indices were low, only one had the average value, but at their minimal range (1.02 and 10.3 adequately for leaves and roots). Translocation index of lead was close to one. The iron contents in soils were not high and they fell within the scope of low and average ranges that occur in Polish soils. The iron contents in leaves were high, attractive from nutrition point of view

    Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus

    Get PDF
    International audienceThe sedimentary cover of the East European Craton (EEC) is unique because of its low degree of diagenetic alteration that allows preservation of the original “source to sink” relationships. The present study provides U-Pb and Hf zircon data for the entire Proterozoic sedimentary section of the EEC based on samples from five boreholes in Belarus within the Volyn-Orsha Basin, one of the most important sedimentary basins of the craton. Twenty-one samples of mudstones and sandstones were selected for detrital zircon U-Pb geochronology, supplemented by the Hf isotope analyses of zircons from 6 samples representing different U-Pb age spectra and bulk rock XRD mineralogy of all mudstone samples collected from the studied boreholes. Five clastic successions in the Volyn-Orsha Basin are characterized by different sources of detrital material: (1) The Mesoproterozoic Pinsk Suite with a narrow population of c. 2.0 Ga zircons, (2) The Orsha Suite with a broad 1.3–3.2 Ga zircon age distribution, (3) Glacial sediments of the Vilchitsy Series with an age spectra similar to the Orsha Suite, except for a c. 1.0 and 1.2 Ga cluster, (4) The Volyn and Valdai Series, including lowermost Cambrian, with a narrow trimodal population of 0.5, 1.5, and 1.8 Ga zircons, and (5) lower Cambrian (?) sediments with a diffused zircon age spectrum, including a 500–700 Ma cluster. Maximum depositional ages were constrained for the Vilchitsy Series at 977 ± 6 Ma and for the Volyn Series at 579–545 ± 4 Ma. Combined Hf zircon data indicate four episodes of new continental crust generation at 3.3, 2.8, 2.1–2.3 and 1.8 Ga, suggestive of source terrains within the crust of the present-day EEC. These sources experienced subsequent reworking of crust at c. 1.8 Ga and 550–600 Ma. Only a lower Cambrian sample lacks any trend or clustering within the Hf data probably due to mixing of zircons from exotic and local sources. Paleogeographic models explaining these provenance signals in terms of intracratonic erosion and sediment transport are presented

    In-channel accretionary macroforms in the modern anastomosing system of the upper Narew River, NE Poland

    Get PDF
    Predomination of sandy bedload is typical of the anastomosing channels of the Narew River. Several types of in-channel accretionary macroforms have been found in these channels: side bars, concave-bank bars, plug bars, point bars, linguoid bars, and mid-channel bars. The first three types are relatively rare, point bars occur only exceptionally, while linguoid bars and mid-channel bars are quite common. The bars usually occur in main channels, which are the master routes of sand transport in the whole anastomosing system of the Narew. The lower parts of the bars are built of coarse- and medium-grained sand, similarly to the sediments in the deeper parts of the channels. Fine-grained sand, locally alternating with organic-rich muddy sand, predominates usually in the upper parts; peat with high content of sand is present in the highest parts of some bars. All bars are rapidly colonised and stabilised by plants. It is for this reason and due to the low energy of the river that the bar sediments have a high preservation potential. The development of bars is usually not accompanied by lateral migration of channels. Consequently, sediment accretion in bars is one of the factors leading to gradual narrowing of channels. Deposits of some sand-bars, when preserved in fossil record, may probably be represented by characteristic "wings" in the outer parts of ribbon-like sand bodies

    Suitability of Selected Plant Species for Phytoremediation: A Case Study of a Coal Combustion Ash Landfill

    No full text
    Coal bottom and fly ash waste continue to be generated as a result of energy production from coal in the amount of about 750 million tonnes a year globally. Coal is the main source of energy in Poland, and about 338 million tonnes of combustion waste has already been landfilled. The aim of the research was to identify factors determining the Cd, Pb, Zn and Cu phytostabilisation by vegetation growing on a coal combustion waste landfill. Soil and shoots of the following plants were analysed: wood small-reed, European goldenrod, common reed; silver birch, black locust, European aspen and common oak. The influence of the location where the plants grew and the influence of the interaction between the two factors (species and location) were significant. The tree species were more effective at accumulating heavy metals than the herbaceous plants. European aspen had the highest Bioaccumulation Factor (BCF) for cadmium and zinc. A high capacity to accumulate these elements was also demonstrated by silver birch, and in the case of cadmium, by common oak. Accumulation of both lead and copper was low in all plants. The Translocation Factors (TF) indicated that the heavy metals were accumulated mainly in the roots. European aspen, silver birch and European goldenrod were shown to be most suitable for stabilization of the metals analysed in the research
    corecore