86 research outputs found

    Surface-Emitted Green Light Generated In Langmuir-Blodgett-Film Wave-Guides

    Get PDF
    We demonstrate second-harmonic generation due to counterpropagating beams in planar waveguides of 2-docosylamino-5-nitropyridine (DCANP). The DCANP molecules were deposited by Langmuir-Blodgett techniques and have a preferred alignment within the substrate plane. Four-layer waveguide structures were used to optimize the trade-off between propagation loss and efficient surface-emitted green light

    Peak effect, vortex-lattice melting-line and order - disorder transition in conventional and high-T superconductors

    Full text link
    We investigate the order - disorder transition line from a Bragg glass to an amorphous vortex glass in the H-T phase diagram of three-dimensional type-II superconductors with account of both pinning-caused and thermal fluctuations of the vortex lattice. Our approach is based on the Lindemann criterion and on results of the collective pinning theory and generalizes previous work of other authors. It is shown that the shapes of the order - disorder transition line and the vortex lattice melting curve are determined only by the Ginzburg number, which characterizes thermal fluctuations, and by a parameter which describes the strength of the quenched disorder in the flux-line lattice. In the framework of this unified approach we obtain the H-T phase diagrams for both conventional and high-Tc superconductors. Several well-known experimental results concerning the fishtail effect and the phase diagram of high-Tc superconductors are naturally explained by assuming that a peak effect in the critical current density versus H signalizes the order - disorder transition line in superconductors with point defects.Comment: 15 pages including 11 figure

    Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor

    Full text link
    The influence of geometry and morphology of superconducting structure on critical currents and magnetic flux trapping in percolative type-II superconductor is considered. The superconductor contains the clusters of a normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The main features of these clusters are studied in detail: the cluster statistics is analyzed; the fractal dimension of their boundary is estimated; the distribution of critical currents is obtained, and its peculiarities are explored. It is examined thoroughly how the finite resolution capacity of the cluster geometrical size measurement affects the estimated value of fractal dimension. The effect of fractal properties of the normal phase clusters on the electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are improved; more detailed version with geometric probability analisys of the distribution of entry points into weak links over the perimeter of a normal phase clusters and one additional figure is published in Phys.Rev.B; alternative e-mail of author is [email protected]

    Low field vortex dynamics over seven time decades in a Bi_2Sr_2CaCu_2O_{8+\delta} single crystal for temperatures 13 K < T < 83 K

    Full text link
    Using a custom made dc-SQUID magnetometer, we have measured the time relaxation of the remanent magnetization M_rem of a Bi_2Sr_2CaCu_2O_{8+\delta} single crystal from the fully critical state for temperatures 13 K < T < 83 K. The measurements cover a time window of seven decades 10^{-2} s < t < 10^5 s, so that the current density j can be studied from values very close to j_c down to values considerably smaller than j_c. From the data we have obtained: (i) the flux creep activation barriers U as a function of current density j, (ii) the current-voltage characteristics E(j) in a typical range of 10^{-7} V/cm to 10^{-15} V/cm, and (iii) the critical current density j_c(0) at T = 0. Three different regimes of vortex dynamics are observed: For temperatures T < 20 K the activation barrier U(j) is logarithmic, no unique functional dependence U(j) could be found for the intermediate temperature interval 20 K < T < 40 K, and finally for T > 40 K the activation barrier U(j) follows a power-law behavior with an exponent mu = 0.6. From the analysis of the data within the weak collective pinning theory for strongly layered superconductors, it is argued that for temperatures T < 20 K pancake-vortices are pinned individually, while for temperatures T > 40 K pinning involves large collectively pinned vortex bundles. A description of the vortex dynamics in the intermediate temperature interval 20 K < T < 40 K is given on the basis of a qualitative low field phase diagram of the vortex state in Bi_2Sr_2CaCu_2O_{8+\delta}. Within this description a second peak in the magnetization loop should occur for temperatures between 20 K and 40 K, as it has been observed in several magnetization measurements in the literature.Comment: 12 pages, 10 figure

    Evolution in the split-peak structure across the Peak Effect region in single crystals of 2H2H-NbSe2_2

    Full text link
    We have explored the presence of a two-peak feature spanning the peak effect (PE) region in the ac susceptibility data and the magnetization hysteresis measurements over a wide field-temperature regime in few weakly pinned single crystals of 2H2H-NbSe2_2, which display reentrant characteristic in the PE curve near TcT_c(0). We believe that the two-peak feature evolves into distinct second magnetization peak anomaly well separated from the PE with gradual enhancement in the quenched random pinning.Comment: 9 figure

    Soft and non-soft structural transitions in disordered nematic networks

    Get PDF
    Properties of disordered nematic elastomers and gels are theoretically investigated with emphasis on the roles of non-local elastic interactions and crosslinking conditions. Networks originally crosslinked in the isotropic phase lose their long-range orientational order by the action of quenched random stresses, which we incorporate into the affine-deformation model of nematic rubber elasticity. We present a detailed picture of mechanical quasi-Goldstone modes, which accounts for an almost completely soft polydomain-monodomain (P-M) transition under strain as well as a ``four-leaf clover'' pattern in depolarized light scattering intensity. Dynamical relaxation of the domain structure is studied using a simple model. The peak wavenumber of the structure factor obeys a power-law-type slow kinetics and goes to zero in true mechanical equilibrium. The effect of quenched disorder on director fluctuation in the monodomain state is analyzed. The random frozen contribution to the fluctuation amplitude dominates the thermal one, at long wavelengths and near the P-M transition threshold. We also study networks obtained by crosslinking polydomain nematic polymer melts. The memory of initial director configuration acts as correlated and strong quenched disorder, which renders the P-M transition non-soft. The spatial distribution of the elastic free energy is strongly dehomogenized by external strain, in contrast to the case of isotropically crosslinked networks.Comment: 19 pages, 15 EPS figure

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file

    Peak Effect, Fishtail Effect and Plateau Effect : The Reentrant Amorphization of Vortex Matter in 2H-NbSe_2

    Get PDF
    The magnetic field dependence of the critical current is studied in single crystal samples of the weak pinning type-II superconductor 2H-NbSe2_2 in the high temperature and the low field region of the (H,T) phase space, in the vicinity of the reentrant peak effect. The experimental results demonstrate various pinning regimes : a collective pinned quasi-ordered solid in the intermediate field that is destabilized in favor of disordered vortex phases in both high fields near Hc2_{c2} and at low fields near Hc1_{c1}. The temperature evolution of the pinning behavior demonstrates how the amorphous limit (where the correlation volume is nearly field independent) is approached around the so-called nose region of the reentrant peak effect boundary. Furthermore, the data show that the rapid approach to the amorphous limit naturally yields a peak effect, i.e., a peak in the critical current, in the high field regime, but yields a ``plateau effect'' instead in the low field regime in an analogous way. With increasing effective disorder the peak effect shifts away from Hc2_{c2} and resembles a ``fishtail'' anomaly.Comment: 6 pages of text and 4 figures. Paper submitted to Phys. Rev.

    Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer

    Get PDF
    Auxetic materials have negative Poisson's ratios and so expand rather than contract in one or several direction(s) perpendicular to applied extensions. The auxetics community has long sought synthetic molecular auxetics - non-porous, inherently auxetic materials which are simple to fabricate and avoid porosity-related weakening. Here, we report, synthetic molecular auxeticity for a non-porous liquid crystal elastomer. For strains above ~0.8 applied perpendicular to the liquid crystal director, the liquid crystal elastomer becomes auxetic with the maximum negative Poisson's ratio measured to date being -0.74 ± 0.03 - larger than most values seen in naturally occurring molecular auxetics. The emergence of auxeticity coincides with the liquid crystal elastomer backbone adopting a negative order parameter, QB = -0.41 ± 0.01 - further implying negative liquid crystal ordering. The reported behaviours consistently agree with theoretical predictions from Warner and Terentjev liquid crystal elastomer theory. Our results open the door for the design of synthetic molecular auxetics
    corecore