202 research outputs found
Modelling localised fracture of reinforced concrete structures
This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled by using a 3-node beam-column element. 2-node bond-link elements are employed for modelling the interaction between plain concrete and reinforcing steel bar elements. It is evident that the nonlinear procedure proposed in this paper can properly model the formation and propagation of individual localised cracks within the reinforced concrete structures. The model presented in this paper enables the researchers and designers to access the integrity of reinforced concrete members under extreme loading conditions by using mesh independent extended finite element method.The support of the Engineering and Physical Sciences Research Council of Great Britain under Grant No. EP/I031553/1
Uniaxial and biaxial soft deformations of nematic elastomers
We give a geometric interpretation of the soft elastic deformation modes of
nematic elastomers, with explicit examples, for both uniaxial and biaxial
nematic order. We show the importance of body rotations in this non-classical
elasticity and how the invariance under rotations of the reference and target
states gives soft elasticity (the Golubovic and Lubensky theorem). The role of
rotations makes the Polar Decomposition Theorem vital for decomposing general
deformations into body rotations and symmetric strains. The role of the square
roots of tensors is discussed in this context and that of finding explicit
forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe
Exponential Decay of Correlations in a Model for Strongly Disordered 2D Nematic Elastomers
Lattice Monte-Carlo simulations were performed to study the equilibrium
ordering in a two-dimensional nematic system with quenched random disorder.
When the disordering field, which competes against the aligning effect of the
Frank elasticity, is sufficiently strong, the long-range correlation of the
director orientation is found to decay as a simple exponential, Exp[-r/x]. The
correlation length {x} itself also decays exponentially with increasing
strength of the disordering field. This result represents a new type of
behavior, distinct from the Gaussian and power-law decays predicted by some
theories.Comment: Latex file (4 pages) + 2 EPS figure
Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals
We report on marked memory effects in the vortex system of twinned YBa2Cu3O7
single crystals observed in ac susceptibility measurements. We show that the
vortex system can be trapped in different metastable states with variable
degree of order arising in response to different system histories. The pressure
exerted by the oscillating ac field assists the vortex system in ordering,
locally reducing the critical current density in the penetrated outer zone of
the sample. The robustness of the ordered and disordered states together with
the spatial profile of the critical current density lead to the observed memory
effects
Slow stress relaxation in randomly disordered nematic elastomers and gels
Randomly disordered (polydomain) liquid crystalline elastomers align under
stress. We study the dynamics of stress relaxation before, during and after the
Polydomain-Monodomain transition. The results for different materials show the
universal ultra-slow logarithmic behaviour, especially pronounced in the region
of the transition. The data is approximated very well by an equation Sigma(t) ~
Sigma_{eq} + A/(1+ Alpha Log[t]). We propose a theoretical model based on the
concept of cooperative mechanical resistance for the re-orientation of each
domain, attempting to follow the soft-deformation pathway. The exact model
solution can be approximated by compact analytical expressions valid at short
and at long times of relaxation, with two model parameters determined from the
data.Comment: 4 pages (two-column), 5 EPS figures (included via epsfig
Evolution of the fishtail-effect in pure and Ag-doped MG-YBCO
We report on magnetic measurements carried out in a textured
YBaCuO and YBa(CuAg)O (at
0.02) crystals. The so-called fishtail-effect (FE) or second
magnetization peak has been observed in a wide temperature range
0.4~~0.8 for . The origin of the FE arises for
the competition between surface barrier and bulk pinning. This is confirmed in
a non-monotonically behavior of the relaxation rate . The value
for Ag-doped crystals is larger than for the pure one due to the presence of
additional pinning centers, above all on silver atoms.Comment: 6 pages, 6 figure
Surface-Emitted Green Light Generated In Langmuir-Blodgett-Film Wave-Guides
We demonstrate second-harmonic generation due to counterpropagating beams in planar waveguides of 2-docosylamino-5-nitropyridine (DCANP). The DCANP molecules were deposited by Langmuir-Blodgett techniques and have a preferred alignment within the substrate plane. Four-layer waveguide structures were used to optimize the trade-off between propagation loss and efficient surface-emitted green light
Peak effect, vortex-lattice melting-line and order - disorder transition in conventional and high-T superconductors
We investigate the order - disorder transition line from a Bragg glass to an
amorphous vortex glass in the H-T phase diagram of three-dimensional type-II
superconductors with account of both pinning-caused and thermal fluctuations of
the vortex lattice. Our approach is based on the Lindemann criterion and on
results of the collective pinning theory and generalizes previous work of other
authors. It is shown that the shapes of the order - disorder transition line
and the vortex lattice melting curve are determined only by the Ginzburg
number, which characterizes thermal fluctuations, and by a parameter which
describes the strength of the quenched disorder in the flux-line lattice. In
the framework of this unified approach we obtain the H-T phase diagrams for
both conventional and high-Tc superconductors. Several well-known experimental
results concerning the fishtail effect and the phase diagram of high-Tc
superconductors are naturally explained by assuming that a peak effect in the
critical current density versus H signalizes the order - disorder transition
line in superconductors with point defects.Comment: 15 pages including 11 figure
Differential-thermal analysis around and below the critical temperature Tc of various low-Tc superconductors: A comparative study
We present specific-heat data on the type-II superconductors V3Si, LuNi2B2C
and NbSe2 which were acquired with a low-temperature thermal analysis (DTA)
technique. We compare our data with available literature data on these
superconductors. In the first part we show that the DTA technique allows for
fast measurements while providing a very high resolution on the temperature
scale. Sharp features in the specific heat such as at the one at the transition
to superconductivity are resolved virtually without instrumental broadening. In
the second part we investigate the magnetic-field dependence of the specific
heats of V3Si and LuNi2B2C at a fixed temperature T=7.5K to demonstrate that
DTA techniques also allow for sufficiently precise measurements of absolute
values of cp even in the absence of a sharp phase transition. The corresponding
data for V3Si and LuNi2B2C are briefly discussed
Evolution in the split-peak structure across the Peak Effect region in single crystals of -NbSe
We have explored the presence of a two-peak feature spanning the peak effect
(PE) region in the ac susceptibility data and the magnetization hysteresis
measurements over a wide field-temperature regime in few weakly pinned single
crystals of -NbSe, which display reentrant characteristic in the PE
curve near (0). We believe that the two-peak feature evolves into distinct
second magnetization peak anomaly well separated from the PE with gradual
enhancement in the quenched random pinning.Comment: 9 figure
- …