5,102 research outputs found

    Selenium-Binding Protein 1 Indicates Myocardial Stress and Risk for Adverse Outcome in Cardiac Surgery

    Get PDF
    Selenium-binding protein 1 (SELENBP1) is an intracellular protein that has been detected in the circulation in response to myocardial infarction. Hypoxia and cardiac surgery affect selenoprotein expression and selenium (Se) status. For this reason, we decided to analyze circulating SELENBP1 concentrations in patients (n = 75) necessitating cardioplegia and a cardiopulmonary bypass (CPB) during the course of the cardiac surgery. Serum samples were collected at seven time-points spanning the full surgical process. SELENBP1 was quantified by a highly sensitive newly developed immunological assay. Serum concentrations of SELENBP1 increased markedly during the intervention and showed a positive association with the duration of ischemia (ρ = 0.6, p < 0.0001). Elevated serum SELENBP1 concentrations at 1 h after arrival at the intensive care unit (post-surgery) were predictive to identify patients at risk of adverse outcome (death, bradycardia or cerebral ischemia, "endpoint 1"; OR 29.9, CI 3.3-268.8, p = 0.00027). Circulating SELENBP1 during intervention (2 min after reperfusion or 15 min after weaning from the CPB) correlated positively with an established marker of myocardial infarction (CK-MB) measured after the intervention (each with ρ = 0.5, p < 0.0001). We concluded that serum concentrations of SELENBP1 were strongly associated with cardiac arrest and the duration of myocardial ischemia already early during surgery, thereby constituting a novel and promising quantitative marker for myocardial hypoxia, with a high potential to improve diagnostics and prediction in combination with the established clinical parameters

    Universality in Glassy Low-Temperature Physics

    Full text link
    We propose a microscopic translationally invariant glass model which exhibits two level tunneling systems with a broad range of asymmetries and barrier heights in its glassy phase. Their distribution is qualitatively different from what is commonly assumed in phenomenological models, in that symmetric tunneling systems are systematically suppressed. Still, the model exhibits the usual glassy low-temperature anomalies. Universality is due to the collective origin of the glassy potential energy landscape. We obtain a simple explanation also for the mysterious {\em quantitative} universality expressed in the unusually narrow universal glassy range of values for the internal friction plateau.Comment: 4 pages, 5 figures, uses RevTeX

    Electroweak effects in top-quark pair production at Hadron Colliders

    Full text link
    Top-quark physics plays an important role at hadron colliders such as the Tevatron collider at Fermilab or the upcoming Large Hadron Collider (LHC) at CERN. Given the planned experimental precision, detailed theoretical predictions are mandatory. In this article we present analytic results for the complete electroweak corrections to gluon induced top-quark pair production, completing our earlier results for the quark-induced reaction. As an application we discuss top-quark pair production at Tevatron and at LHC. In particular we show that, although small for inclusive quantities, weak corrections can be sizeable for differential distribution

    Laser Control of Dissipative Two-Exciton Dynamics in Molecular Aggregates

    Full text link
    There are two types of two-photon transitions in molecular aggregates, that is, non-local excitations of two monomers and local double excitations to some higher excited intra-monomer electronic state. As a consequence of the inter-monomer Coulomb interaction these different excitation states are coupled to each other. Higher excited intra-monomer states are rather short-lived due to efficient internal conversion of electronic into vibrational energy. Combining both processes leads to the annihilation of an electronic excitation state, which is a major loss channel for establishing high excitation densities in molecular aggregates. Applying theoretical pulse optimization techniques to a Frenkel exciton model it is shown that the dynamics of two-exciton states in linear aggregates (dimer to tetramer) can be influenced by ultrafast shaped laser pulses. In particular, it is studied to what extent the decay of the two-exciton population by inter-band transitions can be transiently suppressed. Intra-band dynamics is described by a dissipative hierarchy equation approach, which takes into account strong exciton-vibrational coupling in the non-Markovian regime.Comment: revised version, fig. 8 ne

    Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD

    Get PDF
    New results at four-loop order in perturbative QCD for the first two Taylor coefficients of the heavy quark vacuum polarization function are presented. They can be used to perform a precise determination of the charm- and bottom-quark mass. Implications for the value of the quark masses are briefly discussed.Comment: 8 pages, 13 figures; final version accepted for publication in the journa

    Resolution and enhancement in nanoantenna-based fluorescence microscopy

    Full text link
    Single gold nanoparticles can act as nanoantennas for enhancing the fluorescence of emitters in their near-fields. Here we present experimental and theoretical studies of scanning antenna-based fluorescence microscopy as a function of the diameter of the gold nanoparticle. We examine the interplay between fluorescence enhancement and spatial resolution and discuss the requirements for deciphering single molecules in a dense sample. Resolutions better than 20 nm and fluorescence enhancement up to 30 times are demonstrated experimentally. By accounting for the tip shaft and the sample interface in finite-difference time-domain calculations, we explain why the measured fluorescence enhancements are higher in the presence of an interface than the values predicted for a homogeneous environment.Comment: 10 pages, 3 figures. accepted for publication in Nano Letter

    Variational study of U(1) and SU(2) lattice gauge theories with Gaussian states in 1+1 dimensions

    Full text link
    We introduce a method to investigate the static and dynamic properties of both Abelian and non-Abelian lattice gauge models in 1+1 dimensions. Specifically, we identify a set of transformations that disentangle different degrees of freedom, and apply a simple Gaussian variational ansatz to the resulting Hamiltonian. To demonstrate the suitability of the method, we analyze both static and dynamic aspects of string breaking for the U(1) and SU(2) gauge models. We benchmark our results against tensor network simulations and observe excellent agreement, although the number of variational parameters in the Gaussian ansatz is much smaller.Comment: 19 pages, 6 figures. Added references and corrected typo

    Gaussian states for the variational study of (1+1)-dimensional lattice gauge models

    Full text link
    We introduce a variational ansatz based on Gaussian states for (1+1)-dimensional lattice gauge models. To this end we identify a set of unitary transformations which decouple the gauge degrees of freedom from the matter fields. Using our ansatz, we study static aspects as well as real-time dynamics of string breaking in two (1+1)-dimensional theories, namely QED and two-color QCD. We show that our ansatz captures the relevant features and is in excellent agreement with data from numerical calculations with tensor networks.Comment: 7 pages, 2 figures, proceedings of the 36th Annual International Symposium on Lattice Field Theory, 22-28 July, 2018 Michigan State University, East Lansing, Michigan, US
    corecore