12 research outputs found

    Dual-mode room temperature self-calibrating photodiodes approaching cryogenic radiometer uncertainty

    Get PDF
    The room temperature dual-mode self-calibrating detector combines low-loss photodiodes with electrical substitution radiometry for determination of optical power. By using thermal detection as a built-in reference in the detector, the internal losses of the photodiode can be determined directly, without the need of an external reference. Computer simulations were used to develop a thermal design that minimises the electro-optical non-equivalence in electrical substitution. Based on this thermal design, we produced detector modules that we mounted in a trap structure for minimised reflection loss. The thermal simulations predicted a change in response of around 280 parts per million per millimeter when changing the position of the beam along the centre line of the photodiode, and we were able to reproduce this change experimentally. We report on dual-mode internal loss estimation measurements with radiation of 488 nm at power levels of 500 μW, 875 μW and 1250 μW, using two different methods of electrical substitution. In addition, we present three different calculation algorithms for determining the optical power in thermal mode, all three showing consistent results. We present room temperature optical power measurements at an uncertainty level approaching that of the cryogenic radiometer with 400 ppm (k = 2), where the type A standard uncertainty in the thermal measurement only contributed with 26 ppm at 1250 μW in a 6 hour long measurement sequenc

    Predictable quantum efficient detector: I. Photodiodes and predicted responsivity

    No full text
    The design and construction of a predictable quantum efficient detector (PQED), suggested to be capable of measuring optical power with a relative uncertainty of 1 ppm (ppm = parts per million), is presented. The structure and working principle of induced junction silicon photodiodes are described combined with the design of the PQED. The detector uses two custom-made large area photodiodes assembled into a light-trapping configuration, reducing the reflectance down to a few tens of ppm. A liquid nitrogen cryostat is used to cool the induced junction photodiodes to 78 K to improve the mobility of charge carriers and to reduce the dark current. To determine the predicted spectral responsivity, reflectance losses of the PQED were measured at room temperature and at 78 K and also modelled throughout the visible wavelength range from 400 nm to 800 nm. The measured values of reflectance at room temperature were 29.8 ppm, 22.8 ppm and 6.6 ppm at the wavelengths of 476 nm, 488 nm and 532 nm, respectively, whereas the calculated reflectances were about 4 ppm higher. The reflectance at 78 K was measured at the wavelengths of 488 nm and 532 nm over a period of 60 h during which the reflectance changed by about 20 ppm. The main uncertainty components in the predicted internal quantum deficiency (IQD) of the induced junction photodiodes are due to the reliability of the charge-carrier recombination model and the extinction coefficient of silicon at wavelengths longer than 700 nm. The expanded uncertainty of the predicted IQD is 2 ppm at 78 K over a limited spectral range and below 140 ppm at room temperature over the visible wavelength range. All the above factors are combined as the external quantum deficiency (EQD), which is needed for the calculation of the predicted spectral responsivity of the PQED. The values of the predicted EQD are below 70 ppm between the wavelengths of 476 nm and 760 nm, and their expanded uncertainties mostly vary between 10 ppm and 140 ppm, where the lowest uncertainties are obtained at low temperatures
    corecore