11 research outputs found

    Earthquake activity and hazard in the Carpathian Basin I

    Get PDF
    The seismicity and seismic hazard of the Carpathian Basin are studied in this paper based on a recent comprehensive database cataloging over 20 thousands earthquakes between 456 and 1995. The epicentre distributions of these events indicate the geographical positions of the most active tectonic processes in the region. Among them the south-eastern bend of the Carpathians (Háromszék-Vrancea zone, Romania) and the area of south-eastern Alps have the highest seismic activity. The former source area is very specific by its strong seismicity from the intermediate depth domain (70-170 km). The intermediate-depth sources are deepening nearly vertically but in somewhat SW direction and the separation of the crustal earthquakes from the events connected to the lithospheric plate subsiding into the astenosphere is well observed at about 50 km, which is the depth of the Mohorovičić discontinuity (MOHO) in this region. The lithospheric plate subsiding to the depth of 150-200 km is supposed to be disconnected around 50 km. Some weakness of this slab can also be assumable based on the lower seismic activity observed between 100-120 km

    Einstein's fluctuation formula. A historical overview

    Get PDF
    A historical overview is given on the basic results which appeared by the year 1926 concerning Einstein's fluctuation formula of black-body radiation, in the context of light-quanta and wave-particle duality. On the basis of the original publications (from Planck's derivation of the black-body spectrum and Einstein's introduction of the photons up to the results of Born, Heisenberg and Jordan on the quantization of a continuum) a comparative study is presented on the first line of thoughts that led to the concept of quanta. The nature of the particle-like fluctuations and the wave-like fluctuations are analysed by using several approaches. With the help of the classical probability theory, it is shown that the infinite divisibility of the Bose distribution leads to the new concept of classical poissonian photo-multiplets or to the binary photo-multiplets of fermionic character. As an application, Einstein's fluctuation formula is derived as a sum of fermion type fluctuations of the binary photo-multiplets.Comment: 34 page

    Zum Draper'schen Gesetze

    No full text
    n/
    corecore