5 research outputs found
Spin glasses and algorithm benchmarks: A one-dimensional view
Spin glasses are paradigmatic models that deliver concepts relevant for a
variety of systems. However, rigorous analytical results are difficult to
obtain for spin-glass models, in particular for realistic short-range models.
Therefore large-scale numerical simulations are the tool of choice. Concepts
and algorithms derived from the study of spin glasses have been applied to
diverse fields in computer science and physics. In this work a one-dimensional
long-range spin-glass model with power-law interactions is discussed. The model
has the advantage over conventional systems in that by tuning the power-law
exponent of the interactions the effective space dimension can be changed thus
effectively allowing the study of large high-dimensional spin-glass systems to
address questions as diverse as the existence of an Almeida-Thouless line,
ultrametricity and chaos in short range spin glasses. Furthermore, because the
range of interactions can be changed, the model is a formidable test-bed for
optimization algorithms.Comment: 10 pages, 8 figures (two in crappy quality due to archive
restrictions). Proceedings of the International Workshop on
Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200
A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila
A proteomics approach identifies Drosophila Syd-1 as a Bruchpilot binding partner that controls maturation on both sides of the neuromuscular junction