7 research outputs found

    Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport

    Get PDF
    Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host-specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG-derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species-specific differences in axonal transport and survival

    Passive transfer of blood sera from ALS patients with identified mutations results in elevated motoneuronal calcium level and loss of motor neurons in the spinal cord of mice

    Get PDF
    Introduction: Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Methods: Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice (n = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. Results: The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Discussion: Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the chromosome 9 open reading frame 72 gene

    Passive transfer of sera from als patients with identified mutations evokes an increased synaptic vesicle number and elevation of calcium levels in motor axon terminals, similar to sera from sporadic patients

    Get PDF
    Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role

    Nevelőszülőknél élő óvodás korú gyermekek

    No full text
    Szakdolgozatomban azt vizsgáltam, hogy az óvodapedagógus milyen szerepet tölt be a nevelőszülőknél élő gyermekek életében. Hasonlóságokat és különbözőségeket kerestem a nevelt gyermekek és a jól funkcionáló családban élő gyermekek között az óvodában. Ehhez szakirodalmi áttekintést és interjúkat készítettem. A kutatásom végére, arra a következtetésre jutottam, hogy a nevelt gyermekek számára a két legfontosabb dolog az óvodában a szeretet és az egyéni bánásmód

    Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport.

    No full text
    Funder: UK Horserace Betting Levy BoardNeurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host-specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG-derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species-specific differences in axonal transport and survival
    corecore