1,379 research outputs found

    Moderate levels of oxygenation during the late stage of Earth’s Great Oxidation Event

    Get PDF
    The later stages of Earth’s transition to a permanently oxygenated atmosphere during the Great Oxidation Event (GOE; ∼2.43–2.06 Ga) is commonly linked with the suggestion of an “oxygen overshoot” during the ∼2.22–2.06 Ga Lomagundi Event (LE), which represents Earth’s most pronounced and longest-lived positive carbon isotope excursion. However, the magnitude and extent of atmosphere-ocean oxygenation and implications for the biosphere during this critical period in Earth’s history remain poorly constrained. Here, we present nitrogen (N), selenium (Se), and carbon (C) isotope data, as well as bio-essential element concentrations, for Paleoproterozoic marine shales deposited during the LE. The data provide evidence for a highly productive and well-oxygenated photic zone, with both inner and outer-shelf marine environments characterized by nitrate-and Se oxyanion-replete conditions. However, the redoxcline subsequently encroached back onto the inner shelf during global-scale deoxygenation of the atmosphere-ocean system at the end of the LE, leading to locally enhanced water column denitrification and quantitative reduction of selenium oxyanions. We propose that nitrate-replete conditions associated with fully oxygenated continental shelf settings were a common feature during the LE, but nitrification was not sufficiently widespread for the aerobic nitrogen cycle to impact the isotopic composition of the global ocean N inventory. Placed in the context of Earth’s broader oxygenation history, our findings indicate that O2levels in the atmosphere-ocean system were likely much lower than modern concentrations. Early Paleoproterozoic biogeochemical cycles were thus far less advanced than after Neoproterozoic oxygenation.University of TubingenGerman Research Foundation (DFG) SCHO1071/11-1 VA 1568/1-1UK Research & Innovation (UKRI)Natural Environment Research Council (NERC) NE/V004824/1University of LausanneEuropean Research Council (ERC) 636808National Research Foundation of South Africa (NRF Grant) 75892Spanish Government RYC2020-030014-INatural Sciences and Engineering Research Council of Canada (NSERC)ACS PF grant 624840ND2NERC Frontiers grant NE/V010824/1Royal Society of Londo

    Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES)

    Get PDF
    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature

    Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator

    Get PDF
    We report experiments in which the vibrations of a micromechanical oscillator are coupled to the motion of Bose-condensed atoms in a trap. The interaction relies on surface forces experienced by the atoms at about one micrometer distance from the mechanical structure. We observe resonant coupling to several well-resolved mechanical modes of the condensate. Coupling via surface forces does not require magnets, electrodes, or mirrors on the oscillator and could thus be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes.Comment: 9 pages, 4 figure
    corecore