7 research outputs found
Fetal Epidermal Differentiation and Barrier Development In Vivo is Accelerated by Nuclear Hormone Receptor Activators1
Nuclear receptors which interact with the retinoid X receptor are involved in the regulation of epidermal differentiation and development. We have recently shown that activators of the peroxisome proliferator-activated receptor and of the farnesoid X-activated receptor accelerate epidermal barrier maturation in fetal rat skin in vitro. In this study we asked whether cutaneous development in utero was affected by peroxisome proliferator-activated receptor or farnesoid X-activated receptor activators, or by an activator of another retinoid X receptor partner, liver X receptor. Activators of the peroxisome proliferator-activated receptor (clofibrate or linoleic acid), farnesoid X-activated receptor (farnesol or juvenile hormone III), or liver X receptor (22R-hydroxycholesterol), were injected into the amniotic fluid of fetal rats on gestational day 17. Fetal epidermal barrier function and morphology was assessed on day 19. Whereas vehicle-treated fetal rats displayed no measurable barrier (transepidermal water loss > 10 mg per cm2 per h), a measurable barrier was induced by the intra-amniotic administration of all activators tested (transepidermal water loss range 4.0–8.5 mg per cm2 per h). By light microscopy, control pups lacked a well-defined stratum corneum, whereas a distinct stratum corneum and a thickened stratum granulosum were present in treated pups. By electron microscopy, the extracellular spaces of the stratum corneum in control pups revealed a paucity of mature lamellar unit structures, whereas these structures filled the stratum corneum interstices in treated pups. Additionally, protein and mRNA levels of loricrin and filaggrin, two structural proteins of stratum corneum, were increased in treated epidermis, as were the activities of two lipid catabolic enzymes critical to stratum corneum function, β-glucocerebrosidase and steroid sulfatase. Finally, peroxisome proliferator-activated receptor-α and -δ and liver X receptor-α and -β mRNAs were detected in fetal epidermis by reverse transcriptase–polymerase chain reaction and northern analyses. The presence of these receptors and the ability of their activators to stimulate epidermal barrier and stratum corneum development suggest a physiologic role for peroxisome proliferator-activated receptor and liver X receptor and their endogenous ligands in the regulation of cutaneous development
Identification of an orphan guanylate cyclase receptor selectively expressed in mouse testis.
We have identified a novel membrane form of guanylate cyclase (GC) from a mouse testis cDNA library and termed it mGC-G (mouse GC-G) based on its high sequence homology to rat GC-G. It encodes a potential type I transmembrane receptor, with the characteristic domain structure common to all members of the family of membrane GCs, including an extracellular, putative ligand-binding domain, a single membrane-spanning segment and cytoplasmic protein kinase-like and cyclase catalytic domains. Real-time quantitative reverse transcriptase--PCR and Northern-blot analyses showed that mGC-G is highly and selectively expressed in mouse testis. Phylogenetic analysis based on the extracellular protein sequence revealed that mGC-G is closely related to members of the subfamily of natriuretic peptide receptor GCs. When overexpressed in HEK-293T cells (human embryonic kidney 293T cells) or COS-7 cells, mGC-G manifests as a membrane-bound glycoprotein, which can form either homomeric or heteromeric complexes with the natriuretic peptide receptor GC-A. It exhibits marked cGMP-generating GC activity; however, notably, all ligands known to activate other receptor GCs failed to stimulate enzymic activity. The unique testis-enriched expression of mGC-G, which is completely different from the broader tissue distribution of rat GC-G, suggests the existence of as-yet-unidentified ligands and unappreciated species-specific physiological functions mediated through mGC-G/cGMP signalling in the testis