19 research outputs found

    Molecular mechanism regulating myosin and cardiac functions by ELC

    Get PDF
    The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. We therefore generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67pN/nm and 2.3{my}m/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25pN/nm and 1.7{my}m/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5+-0.03 {my}m/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0mmHg) were significantly higher than hearts from TgM(E56G) (66.2mmHg) or C57/BL6 (59.3+-3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1 > hVLC-1(E56G) ≈ mVLC-1. They also suggest a molecular pathomechanism of cardiomyopathies caused by hVLC-1 mutations

    Muscle RING-finger 2 and 3 maintain striated-muscle structure and function

    Get PDF
    Background: The Muscle-specific RING-finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. Methods: MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real-time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass-spectrometry were used for mechanistic analyses. Results: DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3-deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. Conclusions: The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo

    Risk and protective factors for structural brain ageing in the eighth decade of life

    Get PDF
    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing

    The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters?

    No full text
    To investigate the regulation of the hemodynamic response to functional stimulation, functional near-infrared spectroscopy (fNIRS) has been used, due to its ability to assess the dynamics of oxygenated, deoxygenated and total hemoglobin concentration ([oxy-Hb], [deoxy-Hb] and [tot-Hb]). Concerning the latency of these parameters, recent studies have returned a consistent picture when comparing the oxygenation response in the sensorimotor to the visual system: changes in [oxy-Hb] lead those in [deoxy-Hb] by 1.6 ± 0.2 s (mean ± SD) for the sensorimotor system but not for the visual system (0.1 ± 0.3 s). A number of physiological differences between these cortical areas may account for such a discrepancy, however, the methodological properties of transcranial NIRS also have a relevant influence. Here we show that for the motor system the latency between changes in oxy- compared to deoxy-Hb vanishes once efforts are made to reduce the effects of a systemic response accompanying sensorimotor activity. We apply two independent approaches to reduce the systemic response and find a simultaneous change in [oxy-Hb] and [deoxy-Hb] even in response to a motor paradigm. The two approaches are: (i) an experimental paradigm with alternating contralateral and ipsilateral motor performance without interspersed rest periods designed to minimize systemic changes and (ii) a global correction scheme in an experiment, comparing a unilateral motor performance to rest. These data shed some doubt on the alleged fundamental physiological difference between cortical hemodynamic regulation in motor and visual cortex and highlight the relevance to respect contributions of the systemic hemodynamics

    Molecular mechanism regulating myosin and cardiac functions by ELC

    No full text
    The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. Therefore, we generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67 pN/nm and 2.3 μm/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25 pN/nm and 1.7 μm/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5 μm/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0 mmHg) were significantly higher than hearts from TgM(E56G) (66.2 mmHg) or C57/BL6 (59.3±3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1>hVLC-1(E56G)≈mVLC-1. They also suggest a molecular pathomechanism of hypertrophic cardiomyopathy caused by hVLC-1 mutations
    corecore