92 research outputs found

    The microbiota and autoimmunity: their role in thyroid autoimmune diseases

    Get PDF
    Since the 1970s, the role of infectious diseases in the pathogenesis of Graves' disease (GD) has been an object of intensive research. The last decade has witnessed many studies on Yersinia enterocolitica, Helicobacter pylori and other bacterial organisms and their potential impact on GD. Retrospective, prospective and molecular binding studies have been performed with contrary outcomes. Until now it is not clear whether bacterial infections can trigger autoimmune thyroid disease. Common risk factors for GD (gender, smoking, stress, and pregnancy) reveal profound changes in the bacterial communities of the gut compared to that of healthy controls but a pathogenetic link between GD and dysbiosis has not yet been fully elucidated. Conventional bacterial culture, in vitro models, next generation and high-throughput DNA sequencing are applicable methods to assess the impact of bacteria in disease onset and development. Further studies on the involvement of bacteria in GD are needed and may contribute to the understanding of pathogenetic processes. This review will examine available evidence on the subject

    Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic Escherichia coli.

    Get PDF
    In this paper, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy is able to discriminate rapidly between uropathogenic Escherichia coli (UPEC) of key lineages with only relatively simple sample preparation. A total of 95 bacteria from six different epidemiologically important multilocus sequence types (ST10, ST69, ST95, ST73, ST127 and ST131) were used in this project and principal component-discriminant function analysis (PC-DFA) of these samples produced clear separate clustering of isolates, based on the ST. Analysis of data using partial least squares-discriminant analysis (PLS-DA), incorporating cross-validation, indicated a high prediction accuracy of 91.19% for ST131. These results suggest that FT-IR spectroscopy could be a useful method for the rapid identification of members of important UPEC STs

    Living long and well: prospects for a personalized approach to the medicine of ageing

    Get PDF
    Research into ageing and its underlying molecular basis enables us to develop and implement targeted interventions to ameliorate or cure its consequences. However, the efficacy of interventions often differs widely between individuals, suggesting that populations should be stratified or even individualized. Large-scale cohort studies in humans, similar systematic studies in model organisms as well as detailed investigations into the biology of ageing can provide individual validated biomarkers and mechanisms, leading to recommendations for targeted interventions. Human cohort studies are already ongoing, and they can be supplemented by in silico simulations. Systematic studies in animal models are made possible by the use of inbred strains or genetic reference populations of mice. Combining the two, a comprehensive picture of the various determinants of ageing and ‘health span' can be studied in detail, and an appreciation of the relevance of results from model organisms to humans is emerging. The interactions between genotype and environment, particularly the psychosocial environment, are poorly studied in both humans and model organisms, presenting serious challenges to any approach to a personalized medicine of ageing. To increase the success of preventive interventions, we argue that there is a pressing need for an individualized evaluation of interventions such as physical exercise, nutrition, nutraceuticals and calorie restriction mimetics as well as psychosocial and environmental factors, separately and in combination. The expected extension of the health span enables us to refocus health care spending on individual prevention, starting in late adulthood, and on the brief period of morbidity at very old ag

    How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Get PDF
    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor execution

    Model of Coupling Intention Network to Motor Cortex.

    No full text
    <p>Pyramidal cell potentials (M1), with different input intensity from the intention network (INet), were elevated transcranially by a magnetic impulse in parallel. In the case of the figure above, a TMS impulse and an input from the INet, simultaneously results in a depolarisation of some pyramidal cells (ECR red). We achieved stronger MEP responses when a simultaneous input from the TMS depolarised a large group of pyramidal cells, corresponding to a stronger input from the INet. The TMS impulse above the motor threshold simultaneously activated some of the antagonistic pyramidal cells (FCR green).</p

    Effects of Intention on Kinetics.

    No full text
    <p>The acceleration of the wrist illustrates the kinetics produced by the extensor directed movement with the EXT activities (left) and the FLEX intension produced activities (middle). In the baseline condition (right bar of the diagram), only small omni-directed movements could be observed. Differences between the conditions were tested (with * p<0.05, ** p<0.01, *** p<0.001).</p
    • …
    corecore