142 research outputs found

    Continuum multiscale modeling of absorption processes in micro- and nanocatalysts

    Get PDF
    In this paper, we propose a novel, semi-analytic approach for the two-scale, computational modeling of concentration transport in packed bed reactors. Within the reactor, catalytic pellets are stacked, which alter the concentration evolution. Firstly, the considered experimental setup is discussed and a naive one-scale approach is presented. This one-scale model motivates, due to unphysical fitted values, to enrich the computational procedure by another scale. The computations on the second scale, here referred to as microscale, are based on a proper investigation of the diffusion process in the catalytic pellets from which, after continuum-consistent considerations, a sink term for the macroscopic advection–diffusion–reaction process can be identified. For the special case of a spherical catalyst pellet, the parabolic partial differential equation at the microscale can be reduced to a single ordinary differential equation in time through a semi-analytic approach. After the presentation of our model, we show results for its calibration against the macroscopic response of a simple standard mass transport experiment. Based thereon, the effective diffusion parameters of the catalyst pellets can be identified. © 2022, The Author(s)

    Qualität von Erste-Hilfe-Maßnahmen bei Notfallpatienten

    Get PDF

    Cyclosporin A-binding protein (cyclophilin) of Neurospora crassa

    Get PDF
    Cyclophilin (cyclosporin A-binding protein) has a dual localization in the mitochondria and in the cytosol of Neurospora crassa. The two forms are encoded by a single gene which is transcribed into mRNAs having different lengths and 5' termini (approximately 1 and 0.8 kilobases). The shorter mRNA specifies the cytosolic protein consisting of 179 amino acids. The longer mRNA is translated into a precursor polypeptide with an amino-terminal extension of 44 amino acids which is cleaved in two steps upon entry into the mitochondrial matrix. Neurospora cyclophilin shows about 60% sequence homology to human and bovine cyclophilins

    Relaxed incremental formulations for damage at finite strains including strain softening

    Get PDF
    Relaxation is a promosing technique to overcome mesh-dependency in computational damage mechanics originating from the non-convexity of an underlying incremental variational formulation. This technique does not require an internal length scale parameter. However, in case of damage formulations, for many years the decrease of stresses with an increase of strains, referred to as strain-softening, could not be modeled in the relaxed regime. This contribution discusses several possibilities of relaxation that lead to suitable models for stress- and strain-softening

    Multidimensional rank-one convexification of incremental damage models at finite strains

    Get PDF
    This paper presents computationally feasible rank-one relaxation algorithms for the efficient simulation of a time-incremental damage model with nonconvex incremental stress potentials in multiple spatial dimensions. While the standard model suffers from numerical issues due to the lack of convexity, the relaxation techniques circumvent the problem of non-existence of minimizers and prevent mesh dependency of the solutions of discretized boundary value problems using finite elements. By the combination, modification and parallelization of the underlying convexification algorithms the approach becomes computationally feasible. A descent method and a Newton scheme enhanced by step size control strategies prevents stability issues related to local minima in the energy landscape and the computation of derivatives. Special techniques for the construction of continuous derivatives of the approximated rank-one convex envelope are discussed. A series of numerical experiments demonstrates the ability of the computationally relaxed model to capture softening effects and the mesh independence of the computed approximations

    Ultrathin Solar Cell With Magnesium-Based Optical Switching for Window Applications

    Get PDF
    Photovoltaic windows that can be switched between transparent and energy harvesting mode can be realized by using ultrathin solar absorbers embedded in an optical nanocavity. In the present work, we use a 5 nm thick amorphous germanium absorber integrated in a magnesium-based thin film optical cavity, which switches from an absorptive to a transparent state due to hydrogen absorption. We analyze the influence of the mirror layer thickness on the light absorption, photocurrent generation, and transmission as well as color neutrality of the device. The optical properties are studied by 1-D transfer-matrix method by changing Mg thickness between 0 and 100 nm, then compared to the experimental results of fabricated devices. When the thickness of Mg increases, the switchable average transparency varies between 25% and 0%, while the power conversion efficiency rises up to 2.3%. The applicability of the device is tested by modeling the annual power generation in realistic scenarios. The influence of the cardinal orientation and the seasons on the switchable photovoltaic window implemented in a building facade with the abovementioned parameters is analyzed for different switching scenarios

    Multi operating point aerodynamic optimization of a radial compressor impeller for an application in high temperature heat pump

    Get PDF
    The decarbonization of production processes plays an important role on the way to environmentally friendly economy. Especially, the implementation of high temperature heat pumps (HTHP) offers a great potential to replace fossil fuel-based energy infrastructure. A major issue for the introduction of HTHP is the initial cost and regarding the payback period. However, there is still potential in increasing the coefficient of performance (COP) of HTHP for the economic integration in existing industrial processes. One important possibility is the dedicated development and design of turbocompressors for this application and the planned heat transfer medium including the aerodynamic optimization of compressor geometry. Against this background an automated aerodynamic optimization method for radial compressor blade geometry for superheated steam is presented. The optimization refers to two different operating points of the HTHP and focuses on maximizing the isentropic efficiency of the impeller geometry as well as the pressure ratio. The algorithm is accelerated by data-driven metamodels and is implemented in a high-performance cluster environment. The boundary condition of the inherent computational fluid dynamics (CFD) calculation comes from the thermodynamic cycle calculation of the whole HTHP system. A two-stage compression with intercooling between the compressor stages are foreseen. Our approach shows an increment of both objective functions in both operating points and the satisfaction of further side conditions for the low pressure compressor (LPC). Furthermore, it results in an increment of 5 percent points of isentropic efficiency and 13 percent points of static to total pressure ratio in comparison to our initial geometry. These impeller optimizations result in a COP increment of 5 percent. The resulting geometry will be interpreted in the context of aerodynamic behavior. Based on that results additionally, a flow-cut optimization for the high pressure compressor (HPC) is given and evaluated. The results are comparable to aerodynamic optimization in different research fields like aircraft engines or stationary gas turbines and contribute to optimized multistage compressor design for HTHP

    Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers

    Get PDF
    MRI-based markers can distinguish patients with schizophrenia from healthy controls. Koutsouleris et al. now report a diagnostic signature that distinguishes major depression/bipolar disorder from schizophrenia in 80%/74% of cases. Classification accuracy generalizes to early phases of psychosis, and is moderated by disease stage, age of onset and accelerated brain agein
    corecore