106 research outputs found

    Modeling of interventions for reducing external Enterobacteriaceae contamination of broiler carcasses during processing

    Get PDF
    This article presents a mathematical model for the Enterobacteriaceae count on the surface of broiler chicken during slaughter and how it may be affected by different processing technologies. The model is based on a model originally developed for Campylobacter and has been adapted for Enterobacteriaceae using a Bayesian updating approach and hitherto unpublished data gathered from German abattoirs. The slaughter process in the model consists of five stages: input, scalding, defeathering, evisceration, washing, and chilling. The impact of various processing technologies along the broiler processing line on the Enterobacteriaceae count on the carcasses’ surface has been determined from literature data. The model is implemented in the software R and equipped with a graphical user interface which allows interactively to choose among different processing technologies for each stage along the processing line. Based on the choice of processing technologies the model estimates the Enterobacteriaceae count on the surface of each broiler chicken at each stage of processing. This result is then compared to a so-called baseline model which simulates a processing line with a fixed set of processing technologies. The model calculations showed how even very effective removal of bacteria on the exterior of the carcass in a previous step will be undone by the cross-contamination with leaked feces, if feces contain high concentrations of bacteria

    Dissection of Highly Prevalent qnrS1-Carrying IncX Plasmid Types in Commensal Escherichia coli from German Food and Livestock

    Get PDF
    Plasmids are mobile genetic elements, contributing to the spread of resistance determinants by horizontal gene transfer. Plasmid-mediated quinolone resistances (PMQRs) are important determinants able to decrease the antimicrobial susceptibility of bacteria against fluoroquinolones and quinolones. The PMQR gene qnrS1, especially, is broadly present in the livestock and food sector. Thus, it is of interest to understand the characteristics of plasmids able to carry and disseminate this determinant and therewith contribute to the resistance development against this class of high-priority, critically important antimicrobials. Therefore, we investigated all commensal Escherichia (E.) coli isolates, with reduced susceptibility to quinolones, recovered during the annual zoonosis monitoring 2017 in the pork and beef production chain in Germany (n = 2799). Through short-read whole-genome sequencing and bioinformatics analysis, the composition of the plasmids and factors involved in their occurrence were determined. We analysed the presence and structures of predominant plasmids carrying the PMQR qnrS1. This gene was most frequently located on IncX plasmids. Although the E. coli harbouring these IncX plasmids were highly diverse in their sequence types as well as their phenotypic resistance profiles, the IncX plasmids-carrying the qnrS1 gene were rather conserved. Thus, we only detected three distinct IncX plasmids carrying qnrS1 in the investigated isolates. The IncX plasmids were assigned either to IncX1 or to IncX3. All qnrS1-carrying IncX plasmids further harboured a β-lactamase gene (bla). In addition, all investigated IncX plasmids were transmissible. Overall, we found highly heterogenic E. coli harbouring conserved IncX plasmids as vehicles for the most prevalent qnr gene qnrS1. These IncX plasmids may play an important role in the dissemination of those two resistance determinants and their presence, transfer and co-selection properties require a deeper understanding for a thorough risk assessment

    MRSA in breeding pigs in Germany in 2015

    Get PDF
    Methicillin resistant Staphylococcus aureus has been known to be prevalent in the pig production for nearly 15 years now (Meemken et al., 2010). In 2008 a survey carried out in the EU determined a high prevalence of MRSA in herds of breeding pigs also in Germany (EFSA, 2010). Likewise, MRSA were identified in Germany in herds of fattening pigs (Alt et al., 2011), pigs at slaughter (Tenhagen et al., 2009), on carcasses (Beneke et al., 2011) and in meat from pigs at retail (BVL, 2013). The current investigation was carried out to determine the current prevalence of MRSA in herds of breeding pigs, analyse patterns in the type of MRSA isolated from pigs and determine differences between the MRSA observed in units only housing sows and those housing weaned piglets. In previous studies it could be shown, that the prevalence of MRSA is higher in weaned piglets than in sows but little is known about differences in the types of MRSA that can be isolated in the different units

    Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015

    Get PDF
    Since the first description of a plasmid-mediated colistin resistance gene (mcr-1) in November 2015 multiple reports of mcr-1 positive isolates indicate a worldwide spread of this newly discovered resistance gene in Enterobacteriaceae. Although the occurrence of mcr-1 positive isolates of livestock, food, environment and human origin is well documented only few systematic studies on the prevalence of mcr-1 are available yet. Here, comprehensive data on the prevalence of mcr-1 in German livestock and food isolates are presented. Over 10.600 E. coli isolates from the national monitoring on zoonotic agents from the years 2010–2015 were screened for phenotypic colistin resistance (MIC value >2 mg/l). Of those, 505 resistant isolates were screened with a newly developed TaqMan-based real-time PCR for the presence of the mcr-1 gene. In total 402 isolates (79.8% of colistin resistant isolates) harboured the mcr-1 gene. The prevalence was depending on the food production chain. The highest prevalence was detected in the turkey food chain (10.7%), followed by broilers (5.6%). A low prevalence was determined in pigs, veal calves and laying hens. The mcr-1 was not detected in beef cattle, beef and dairy products in all years investigated. In conclusion, TaqMan based real-time PCR provides a fast and accurate tool for detection of mcr-1 gene. The overall detection rate of 3.8% for mcr-1 among all E. coli isolates tested is due to high prevalence of mcr-1 in poultry production chains. More epidemiological studies of other European countries are urgently needed to assess German prevalence data

    CTX-M-15-Producing E. coli Isolates from Food Products in Germany Are Mainly Associated with an IncF-Type Plasmid and Belong to Two Predominant Clonal E. coli Lineages

    Get PDF
    Extended-spectrum beta-lactamases (ESBL) mediating resistance to 3rd generation cephalosporins are a major public health issue. As food may be a vehicle in the spread of ESLB-producing bacteria, a study on the occurrence of cephalosporin-resistantu Escherichia coli in food was initiated. A total of 404 ESBL-producing isolates were obtained from animal-derived food samples (e.g., poultry products, pork, beef and raw milk) between 2011 and 2013. As CTX-M-15 is the most abundant enzyme in ESBL-producing E. coli causing human infections, this study focusses on E. coli isolates from food samples harboring the blaCTX-M-15 gene. The blaCTX-M-15 gene was detected in 5.2% (n = 21) of all isolates. Molecular analyses revealed a phylogenetic group A ST167 clone that was repeatedly isolated from raw milk and beef samples over a period of 6 months. The analyses indicate that spread of CTX-M-15-producing E. coli in German food samples were associated with a multireplicon IncF (FIA FIB FII) plasmid and additional antimicrobial resistance genes such as aac(6)-Ib-cr, blaOXA−1, catB3, different tet-variants as well as a class 1 integron with an aadA5/dfrA17 gene cassette. In addition, four phylogenetic group A ST410 isolates were detected. Three of them carried a chromosomal copy of the blaCTX-M-15 gene and a single isolate with the gene on a 90 kb IncF plasmid. The blaCTX-M-15 gene was always associated with the ISEcp1 element. In conclusion, CTX-M-15-producing E. coli were detected in German food samples. Among isolates of different matrices, two prominent clonal lineages, namely A-ST167 and A-ST410, were identified. These lineages may be important for the foodborne dissemination of CTX-M-15-producing E. coli in Germany. Interestingly, these clonal lineages were reported to be widely distributed and especially prevalent in isolates from humans and livestock. Transmission of CTX-M-15-harboring isolates from food-producing animals to food appears probable, as isolates obtained from livestock and food samples within the same time period exhibit comparable characteristics as compared to isolates detected from human. However, the routes and direction of transmission need further investigation

    Identification of a blaVIM-1-Carrying IncA/C2 Multiresistance Plasmid in an Escherichia coli Isolate Recovered from the German Food Chain

    Get PDF
    Within the German national monitoring of zoonotic agents, antimicrobial resistance determination also targets carbapenemase-producing (CP) Escherichia coli by selective isolation from food and livestock. In this monitoring in 2019, the CP E. coli 19-AB01133 was recovered from pork shoulder. The isolate was assigned to the phylogenetic group B1 and exhibited the multi-locus sequence-type ST5869. Molecular investigations, including whole genome sequencing, of 19-AB01133 revealed that the isolate carried the resistance genes blaVIM-1, blaSHV-5 and blaCMY-13 on a self-transmissible IncA/C2 plasmid. The plasmid was closely related to the previously described VIM-1-encoding plasmid S15FP06257_p from E. coli of pork origin in Belgium. Our results indicate an occasional spread of the blaVIM-1 gene in Enterobacteriaceae of the European pig population. Moreover, the blaVIM-1 located on an IncA/C2 plasmid supports the presumption of a new, probably human source of carbapenemase-producing Enterobacteriaceae (CPE) entering the livestock and food chain sector

    Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli

    Get PDF
    Antimicrobial resistance (AMR) is a major threat to public health worldwide. Currently, AMR typing changes from phenotypic testing to whole-genome sequence (WGS)-based detection of resistance determinants for a better understanding of the isolate diversity and elements involved in gene transmission (e.g., plasmids, bacteriophages, transposons). However, the use of WGS data in monitoring purposes requires suitable techniques, standardized parameters and approved guidelines for reliable AMR gene detection and prediction of their association with mobile genetic elements (plasmids). In this study, different sequencing and assembly strategies were tested for their suitability in AMR monitoring in Escherichia coli in the routines of the German National Reference Laboratory for Antimicrobial Resistances. To assess the outcomes of the different approaches, results from in silico predictions were compared with conventional phenotypic- and genotypic-typing data. With the focus on (fluoro)quinolone-resistant E.coli, five qnrS-positive isolates with multiple extrachromosomal elements were subjected to WGS with NextSeq (Illumina), PacBio (Pacific BioSciences) and ONT (Oxford Nanopore) for in depth characterization of the qnrS1-carrying plasmids. Raw reads from short- and long-read sequencing were assembled individually by Unicycler or Flye or a combination of both (hybrid assembly). The generated contigs were subjected to bioinformatics analysis. Based on the generated data, assembly of long-read sequences are error prone and can yield in a loss of small plasmid genomes. In contrast, short-read sequencing was shown to be insufficient for the prediction of a linkage of AMR genes (e.g., qnrS1) to specific plasmid sequences. Furthermore, short-read sequencing failed to detect certain duplications and was unsuitable for genome finishing. Overall, the hybrid assembly led to the most comprehensive typing results, especially in predicting associations of AMR genes and mobile genetic elements. Thus, the use of different sequencing technologies and hybrid assemblies currently represents the best approach for reliable AMR typing and risk assessment

    ChromID® CARBA Agar Fails to Detect Carbapenem-Resistant Enterobacteriaceae With Slightly Reduced Susceptibility to Carbapenems

    Get PDF
    After first detections of carbapenemase-producing Enterobacteriaceae (CPE) in animals, the European Union Reference Laboratory for Antimicrobial Resistance has provided a protocol for the isolation of carbapenemase-producingEscherichia(E.)colifrom cecum content and meat. Up to now, only few isolates were recovered using this procedure. In our experience, the choice of the selective agar is important for the efficacy of the method. Currently, the use of the prevailing method fails to detect CPE that exhibit a low resistance against carbapenems. Thus, this study aims to evaluate the suitability of selective media with antibiotic supplements and commercial ChromID(R)CARBA agar for a reliable CPE detection. For comparative investigations, detection of freeze-dried carbapenemase-resistant bacteria was studied on different batches of the ChromID(R)CARBA agar as well as on MacConkey agar supplemented with 1 mg/L cefotaxime and 0.125 mg/L meropenem (McC+CTX+MEM). The suitability of the different media was assessed within a time of 25 weeks, starting at least six weeks before expiration of the media. Carbapenem-resistant isolates exhibiting a serine-based hydrolytic resistance mechanism (e.g.,bla(KPC)genes) were consistently detected over 25 weeks on the different media. In contrast, carbapenemase producers with only slightly reduced susceptibility and exhibiting a zinc-catalyzed activity (e.g.,bla(VIM),bla(NDM), andbla(IMP)) could only be cultivated on long-time expired ChromID(R)CARBA, but within the whole test period on McC+CTX+MEM. Thus, ChromID(R)CARBA agar appears to be not suitable for the detection of CPE with slightly increased minimum inhibitory concentrations (MIC) against carbapenems, which have been detected in German livestock and thus, are of main interest in the national monitoring programs. Our data are in concordance with the results of eleven state laboratories that had participated in this study with their ChromID(R)CARBA batches routinely used for the German CPE monitoring. Based on the determined CPE detection rate, we recommend the use of McC+CTX+MEM for monitoring purposes. This study indicates that the use of ChromID(R)CARBA agar might lead to an underestimation of the current CPE occurrence in food and livestock samples

    Isolation Procedure for CP E. coli from Caeca Samples under Review towards an Increased Sensitivity

    Get PDF
    Due to the increasing reports of carbapenemase-producing Enterobacteriaceae (CPE) from livestock in recent years, the European Reference Laboratory for Antimicrobial Resistances (EURL-AR) provided a protocol for their recovery from caecum and meat samples. This procedure exhibited limitations for the detection of CPE with low carbapenem MIC values. Therefore, it was modified by a second, selective enrichment in lysogeny broth with cefotaxime (CTX 1 mg/L) and with meropenem (MEM 0.125 mg/L) at 37 °C under microaerophilic conditions. By Real-time PCR, these enrichments are pre-screened for the most common carbapenemase genes. Another adaptation was the use of in-house prepared MacConkey agar with MEM and MEM+CTX instead of commercial selective agar. According to the EURL-method, we achieved 100% sensitivity and specificity using the in-house media instead of commercial agar, which decreased the sensitivity to ~75%. Comparing the method with and without the second enrichment, no substantial influence on sensitivity and specificity was detected. Nevertheless, this enrichment has simplified the CPE-isolation regarding the accompanying microbiota and the separation of putative colonies. In conclusion, the sensitivity of the method can be increased with slight modifications

    What is a biosecurity measure? A definition proposal for animal production and linked processing operations

    Get PDF
    While biosecurity, a central component of the One Health concept, is clearly defined, a harmonized definition of the term ´biosecurity measure´ (BSM) is missing. In turn, particularly at the farm and policy level, this leads to misunderstandings, low acceptance, poor implementation, and thus suboptimal biosecurity along the food animal production chain. Moreover, different views on BSMs affects making comparisons both at the policy level as well as in the scientific community. Therefore, as part of the One Health EJP BIOPIGEE project, a work group i) collected and discussed relevant inclusion and exclusion criteria for measures to be considered in the context of biosecurity and ii) conducted a systematic literature review for potentially existing definitions for the term BSM. This exercise confirmed the lack of a definition of BSM, underlining the importance of the topic. In the pool of articles considered relevant to defining the term BSM, specific research themes were identified. Based on these outcomes, we propose a definition of the term BSM: “A biosecurity measure (BSM) – is the implementation of a segregation, hygiene, or management procedure (excluding medically effective feed additives and preventive/curative treatment of animals) that specifically aims at reducing the probability of the introduction, establishment, survival, or spread of any potential pathogen to, within, or from a farm, operation or geographical area.” The definition provides a basis for policymakers to identify factual BSMs, highlights the point of implementation and supports to achieve the necessary quality standards of biosecurity in food animal production. It also enables clear, harmonized, cross-sectoral communication of best biosecurity practices to and from relevant stakeholders and thus contribute to improving biosecurity and thereby strengthen the One Health approach
    corecore