4,387 research outputs found

    A critical analysis of Popper's experiment

    Full text link
    An experiment which could decide against the Copenhagen interpretation of quantum mechanics has been proposed by K. Popper and, subsequently, it has been criticized by M.J. Collett and R. Loudon. Here we show that both the above mentioned arguments are not correct because they are based on a misuse of basic quantum rules.Comment: 12 pages, 3 figures, RevTex; to be published on PR

    Content & Watkins's account of natural axiomatizations

    Get PDF
    This paper briefly recounts the importance of the notion of natural axiomatizations for explicating hypothetico-deductivism, empirical significance, theoretical reduction, and organic fertility. Problems for the account of natural axiomatizations developed by John Watkins in Science and Scepticism and the revised account developed by Elie Zahar are demonstrated. It is then shown that Watkins's account can be salvaged from various counter-examples in a principled way by adding the demand that every axiom of a natural axiomatization should be part of the content of the theory being axiomatized. The crucial point here is that content cannot simply be identified with the set of logical consequences of a theory, but must be restricted to a proper subset of the consequence set. It is concluded that the revised Watkins account has certain advantages over the account of natural axiomatizations offered in Gemes (1993)

    Bayes and health care research.

    Get PDF
    Bayes’ rule shows how one might rationally change one’s beliefs in the light of evidence. It is the foundation of a statistical method called Bayesianism. In health care research, Bayesianism has its advocates but the dominant statistical method is frequentism. There are at least two important philosophical differences between these methods. First, Bayesianism takes a subjectivist view of probability (i.e. that probability scores are statements of subjective belief, not objective fact) whilst frequentism takes an objectivist view. Second, Bayesianism is explicitly inductive (i.e. it shows how we may induce views about the world based on partial data from it) whereas frequentism is at least compatible with non-inductive views of scientific method, particularly the critical realism of Popper. Popper and others detail significant problems with induction. Frequentism’s apparent ability to avoid these, plus its ability to give a seemingly more scientific and objective take on probability, lies behind its philosophical appeal to health care researchers. However, there are also significant problems with frequentism, particularly its inability to assign probability scores to single events. Popper thus proposed an alternative objectivist view of probability, called propensity theory, which he allies to a theory of corroboration; but this too has significant problems, in particular, it may not successfully avoid induction. If this is so then Bayesianism might be philosophically the strongest of the statistical approaches. The article sets out a number of its philosophical and methodological attractions. Finally, it outlines a way in which critical realism and Bayesianism might work together. </p

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio)

    Get PDF
    Investigations of the development of auditory form and function have, with a few exceptions, thus far been largely restricted to birds and mammals, making it difficult to postulate evolutionary hypotheses. Teleost fishes represent useful models for developmental investigations of the auditory system due to their often extensive period of posthatching development and the diversity of auditory specializations in this group. Using the auditory brainstem response and morphological techniques we investigated the development of auditory form and function in zebrafish (Danio rerio) ranging in size from 10 to 45 mm total length. We found no difference in auditory sensitivity, response latency, or response amplitude with development, but we did find an expansion of maximum detectable frequency from 200 Hz at 10 mm to 4000 Hz at 45 mm TL. The expansion of frequency range coincided with the development of Weberian ossicles in zebrafish, suggesting that changes in hearing ability in this species are driven more by development of auxiliary specializations than by the ear itself. We propose a model for the development of zebrafish hearing wherein the Weberian ossicles gradually increase the range of frequencies available to the inner ear, much as middle ear development increases frequency range in mammals

    Quantum erasure within the Optical Stern-Gerlach Model

    Full text link
    In the optical Stern-Gerlach effect the two branches in which the incoming atomic packet splits up can display interference pattern outside the cavity when a field measurement is made which erases the which-way information on the quantum paths the system can follow. On the contrary, the mere possibility to acquire this information causes a decoherence effect which cancels out the interference pattern. A phase space analysis is also carried out to investigate on the negativity of the Wigner function and on the connection between its covariance matrix and the distinguishability of the quantum paths.Comment: 7 pages, 3 figure

    Development of ultrasound detection in American shad (Alosa sapidissima)

    Get PDF
    It has recently been shown that a few fish species, including American shad (Alosa sapidissima; Clupeiformes), are able to detect sound up to 180 kHz, an ability not found in most other fishes. Initially, it was proposed that ultrasound detection in shad involves the auditory bullae, swim bladder extensions found in all members of the Clupeiformes. However, while all clupeiformes have bullae, not all can detect ultrasound. Thus, the bullae alone are not sufficient to explain ultrasound detection. In this study, we used a developmental approach to determine when ultrasound detection begins and how the ability to detect ultrasound changes with ontogeny in American shad. We then compared changes in auditory function with morphological development to identify structures that are potentially responsible for ultrasound detection. We found that the auditory bullae and all three auditory end organs are present well before fish show ultrasound detection behaviourally and we suggest that an additional specialization in the utricle (one of the auditory end organs) forms coincident with the onset of ultrasound detection. We further show that this utricular specialization is found in two clupeiform species that can detect ultrasound but not in two clupeiform species not capable of ultrasound detection. Thus, it appears that ultrasound-detecting clupeiformes have undergone structural modification of the utricle that allows detection of ultrasonic stimulation

    Is the quantum world composed of propensitons?

    Get PDF
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put forward this version of quantum theory in 1916/17 in his papers on spontaneous and induced radiative transitions, but retreated from doing so because he disliked the probabilistic character of the idea. Subsequently, the idea was overlooked because debates about quantum theory polarised into the Bohr/Heisenberg camp, which argued for the abandonment of realism and determinism, and the Einstein/Schrödinger camp, which argued for the retention of realism and determinism, no one, as a result, pursuing the most obvious option of retaining realism but abandoning determinism. It is this third, overlooked option that leads to PQT. PQT has implications for quantum field theory, the standard model, string theory, and cosmology. The really important point, however, is that it is experimentally testable. I indicate two experiments in principle capable of deciding between PQT and OQT

    How Events Come Into Being: EEQT, Particle Tracks, Quantum Chaos, and Tunneling Time

    Get PDF
    In sections 1 and 2 we review Event Enhanced Quantum Theory (EEQT). In section 3 we discuss applications of EEQT to tunneling time, and compare its quantitative predictions with other approaches, in particular with B\"uttiker-Larmor and Bohm trajectory approach. In section 4 we discuss quantum chaos and quantum fractals resulting from simultaneous continuous monitoring of several non-commuting observables. In particular we show self-similar, non-linear, iterated function system-type, patterns arising from quantum jumps and from the associated Markov operator. Concluding remarks pointing to possible future development of EEQT are given in section 5.Comment: latex, 27 pages, 7 postscript figures. Paper submitted to Proc. Conference "Mysteries, Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25 September, 199
    • 

    corecore