50 research outputs found

    Depth-Varying Friction on a Ramp-Flat Fault Illuminated by ∼3-Year InSAR Observations Following the 2017 Mw 7.3 Sarpol-e Zahab Earthquake

    Get PDF
    We use interferometric synthetic aperture radar observations to investigate the fault geometry and afterslip evolution within 3 years after a mainshock. The postseismic observations favor a ramp-flat structure in which the flat angle should be lower than 10°. The postseismic deformation is dominated by afterslip, while the viscoelastic response is negligible. A multisegment, stress-driven afterslip model (hereafter called the SA-2 model) with depth-varying frictional properties better explains the spatiotemporal evolution of the postseismic deformation than a two-segment, stress-driven afterslip model (hereafter called the SA-1 model). Although the SA-2 model does not improve the misfit significantly, this multisegment fault with depth-varying friction is more physically plausible given the depth-varying mechanical stratigraphy in the region. Compared to the kinematic afterslip model, the mechanical afterslip models with friction variation tend to underestimate early postseismic deformation to the west, which may indicate more complex fault friction than we expected. Both the kinematic and stress-driven models can resolve downdip afterslip, although it could be affected by data noise and model resolution. The transition depth of the sedimentary cover basement interface inferred by afterslip models is ∼12 km in the seismogenic zone, which coincides with the regional stratigraphic profile. Because the coseismic rupture propagated along a basement-involved fault while the postseismic slip may activate the frontal structures and/or shallower detachments in the sedimentary cover, the 2017 Sarpol-e Zahab earthquake may have acted as a typical event that contributed to both thick- and thin-skinned shortening of the Zagros in both seismic and aseismic ways

    Earthquake Probability Assessment for the Active Faults in Central Taiwan: A Case Study

    Full text link
    Frequent high seismic activities occur in Taiwan due to fast plate motions. According to the historical records the most destructive earthquakes in Taiwan were caused mainly by inland active faults. The Central Geological Survey (CGS) of Taiwan has published active fault maps in Taiwan since 1998. There are 33 active faults noted in the 2012 active fault map. After the Chi-Chi earthquake, CGS launched a series of projects to investigate the details to better understand each active fault in Taiwan. This article collected this data to develop active fault parameters and referred to certain experiences from Japan and the United States to establish a methodology for earthquake probability assessment via active faults. We consider the active faults in Central Taiwan as a good example to present the earthquake probability assessment process and results. The appropriate “probability model” was used to estimate the conditional probability where M ≥ 6.5 and M ≥ 7.0 earthquakes. Our result shows that the highest earthquake probability for M ≥ 6.5 earthquake occurring in 30, 50, and 100 years in Central Taiwan is the Tachia-Changhua fault system. Conversely, the lowest earthquake probability is the Chelungpu fault. The goal of our research is to calculate the earthquake probability of the 33 active faults in Taiwan. The active fault parameters are important information that can be applied in the following seismic hazard analysis and seismic simulation
    corecore