19 research outputs found

    Understanding the substrate specificity of the heparan sulfate sulfotransferases by an integrated biosynthetic and crystallographic approach

    Get PDF
    Heparan sulfates (HSs) have potential therapeutic value as anti-inflammatory and antimetastasis drugs, in addition to their current use as anticoagulants. Recent advances in chemoenzymatic synthesis of HS provide a way to conveniently produce homogenous HS with different biological properties. Crystal structures of sulfotransferases involved in this process are providing atomic detail of their substrate binding clefts and interactions with their HS substrates. In theory, the flexibility of this method can be increased by modifying the specificities of the sulfotransferases based on the structures, thereby producing a new array of products

    Uncovering Biphasic Catalytic Mode of C 5 -epimerase in Heparan Sulfate Biosynthesis

    Get PDF
    Heparan sulfate (HS), a highly sulfated polysaccharide, is biosynthesized through a pathway involving several enzymes. C5-epimerase (C5-epi) is a key enzyme in this pathway. C5-epi is known for being a two-way catalytic enzyme, displaying a “reversible” catalytic mode by converting a glucuronic acid to an iduronic acid residue, and vice versa. Here, we discovered that C5-epi can also serve as a one-way catalyst to convert a glucuronic acid to an iduronic acid residue, displaying an “irreversible” catalytic mode. Our data indicated that the reversible or irreversible catalytic mode strictly depends on the saccharide substrate structures. The biphasic mode of C5-epi offers a novel mechanism to regulate the biosynthesis of HS with the desired biological functions

    Molecular Mechanism of Substrate Specificity for Heparan Sulfate 2- O -Sulfotransferase

    Get PDF
    Heparan sulfate (HS) is an abundant polysaccharide in the animal kingdom with essential physiological functions. HS is composed of sulfated saccharides that are biosynthesized through a complex pathway involving multiple enzymes. In vivo regulation of this process remains unclear. HS 2-O-sulfotransferase (2OST) is a key enzyme in this pathway. Here, we report the crystal structure of the ternary complex of 2OST, 3′-phosphoadenosine 5′-phosphate, and a heptasaccharide substrate. Utilizing site-directed mutagenesis and specific oligosaccharide substrate sequences, we probed the molecular basis of specificity and 2OST position in the ordered HS biosynthesis pathway. These studies revealed that Arg-80, Lys-350, and Arg-190 of 2OST interact with the N-sulfo groups near the modification site, consistent with the dependence of 2OST on N-sulfation. In contrast, 6-O-sulfo groups on HS are likely excluded by steric and electrostatic repulsion within the active site supporting the hypothesis that 2-O-sulfation occurs prior to 6-O-sulfation. Our results provide the structural evidence for understanding the sequence of enzymatic events in this pathway

    Homogeneous low-molecular-weight heparins with reversible anticoagulant activity

    Get PDF
    Low-molecular-weight heparins (LMWHs) are carbohydrate-based anticoagulants clinically used to treat thrombotic disorders, but impurities, structural heterogeneity or functional irreversibility can limit treatment options. We report a series of synthetic LMWHs prepared by cost-effective chemoenzymatic methods. The high activity of one defined synthetic LMWH against human factor Xa (FXa) was reversible in vitro and in vivo using protamine, demonstrating that synthetically accessible constructs can have a critical role in the next generation of LMWHs

    A novel hyaluronidase produced by Bacillus sp. A50.

    No full text
    Hyaluronidases are a family of enzymes that degrade hyaluronic acid (hyaluronan, HA) and widely used in many fields. A hyaluronidase producing bacteria strain was screened from the air. 16S ribosomal DNA (16S rDNA) analysis indicated that the strain belonged to the genus Bacillus, and the strain was named as Bacillus sp. A50. This is the first report of a hyaluronidase from Bacillus, which yields unsaturated oligosaccharides as product like other microbial hyaluronate lyases. Under optimized conditions, the yield of hyaluronidase from Bacillus sp. A50 could reach up to 1.5×10(4) U/mL, suggesting that strain A50 is a good producer of hyaluronidase. The hyaluronidase (HAase-B) was isolated and purified from the bacterial culture, with a specific activity of 1.02×10(6) U/mg protein and a yield of 25.38%. The optimal temperature and pH of HAase-B were 44°C and pH 6.5, respectively. It was stable at pH 5-6 and at a temperature lower than 45°C. The enzymatic activity could be enhanced by Ca2+, Mg2+, or Ni2+, and inhibited by Zn2+, Cu2+, EDTA, ethylene glycol tetraacetic acid (EGTA), deferoxamine mesylate salt (DFO), triton X-100, Tween 80, or SDS at different levels. Kinetic measurements of HAase-B towards HA gave a Michaelis constant (Km) of 0.02 mg/mL, and a maximum velocity (Vmax) of 0.27 A232/min. HAase-B also showed activity towards chondroitin sulfate A (CSA) with the kinetic parameters, Km and Vmax, 12.30 mg/mL and 0.20 A232/min respectively. Meanwhile, according to the sequences of genomic DNA and HAase-B's part peptides, a 3,324-bp gene encoding HAase-B was obtained

    SDS-PAGE of hyaluronidase (HAase-<i>B</i>) after Superdex 200 column chromatography.

    No full text
    <p>Marker: Unstained Protein Molecular Weight Marker; Lane 1: supernatant of culture fluid; Lane 2: purified hyaluronidase (HAase-<i>B</i>).</p

    <b>Substrate specificity of HAase-</b><b><i>B.</i></b>

    No full text
    a<p>The activities of HAase-<i>B</i> on various substrates were measured as described in materials and methods. The activity of HAase-<i>B</i> on sodium hyaluronate was taken as 100%. The data represent the mean of three experimental repeats with SD≤5%.</p

    Morphological images of Strain A50.

    No full text
    <p>(A) Transparent zones appeared around some colonies on a HA agar plate after soaked in 2 M acetic acid; (B) Gram staining of strain A50 after being cultured for 12 h, showing rod shaped and gram-positive bacteria under the microscope (Magnification is 15Ă—100); (C) Gram staining of strain A50 after being cultured for 24 h, showing spores under the microscope (Magnification is 15Ă—100).</p

    <b>Purification of the hyaluronidase produced by </b><b><i>Bacillus</i></b><b> sp. A50.</b>

    No full text
    <p><b>Purification of the hyaluronidase produced by </b><b><i>Bacillus</i></b><b> sp. A50.</b></p
    corecore