129 research outputs found

    An improved level set method for vertebra CT image segmentation

    Full text link

    A Retrospective Paired Study: Efficacy and Safety of Nimotuzumab Combined with Radiochemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma

    Get PDF
    Objective: To evaluate the efficacy and safety of nimotuzumab in combination with radiochemotherapy as the primary treatment in patients with locoregionally advanced nasopharyngeal carcinoma (NPC). Methods: We retrospectively reviewed patients with locoregionally advanced nasopharyngeal carcinoma from September 2012 to December 2016. 188 newly diagnosed patients with stage IIIā€“IVB nasopharyngeal carcinoma were treated with at least 1-2 cycles of chemotherapy concurrently with planned IMRT. 88 patients received nimotuzumab 200 mg/week. Acute and late radiation-related toxicities were graded according to the Acute and Late Radiation Morbidity Scoring Criteria of Radiation Therapy Oncology Group. Results: After 3 months of treatment, the complete response rates of nasopharyngeal tumors in the study group and the control group were 78.4% and 65.5%, respectively (?2=4.070, P=0.044). The total complete response rates of cervical lymph nodes in the study group and the control group were 80.7% and 67.6% respectively (?2=4.022, P=0.045).The median cycle for nimotuzumab addition was 6.3 weeks. With a median follow-up of 36.3 months (range, 12ā€“72 months), the estimated 3-year progression failure-free survival and overall survival rates for the study group and the control group were 85.24% vs 81.97% and 96.67% vs 90.0%, respectively. The 3-year local recurrence-free survival rates for the study group and the control group were 96.67% vs 83.60%, respectively (P=0.047). Grade 3 radiation-induced mucositis accounted for 36.4% of treated patients. No skin rash and infusion reaction were observed, distinctly from what is reported in control patients. Conclusion: Nimotuzumab plus chemoradiotherapy in the treatment of locoregionally advanced nasopharyngeal carcinoma showed promising outcomes in terms of locoregional control, without increasing the incidence of radiation-related toxicities for patients

    Global patterns of plant and microbial biomass in response to CO2 fumigation

    Get PDF
    IntroductionThe stimulation of plant and microbial growth has been widely observed as a result of elevated CO2 concentrations (eCO2), however, this stimulation could be influenced by various factors and their relative importance remains unclear.MethodsA global meta-analysis was performed using 884 lines of observations collected from published papers, which analyzed the eCO2 impact on plant and microbial biomass.ResultsA significant positive impact of eCO2 was observed on various biomass measures, including aboveground biomass (20.5%), belowground biomass (42.6%), soil microbial biomass (10.4%), fungal biomass (11.0%), and bacterial biomass (9.2%). It was found that eCO2 levels above 200ā€†ppm had a greater impact on plant biomass compared to concentrations at or below 200ā€†ppm. On the other hand, studies showed that positive effects on microbial biomass were more prominent at lower eCO2 levels (ā‰¤200 ppm) than at higher levels (>200 ppm), which could be explained by soil nitrogen limitations. Importantly, our results indicated that aboveground biomass was controlled more by climatic and experimental conditions, while soil properties strongly impacted the stimulation of belowground and microbial biomass.DiscussionOur results provided evidence of the eCO2 fertilization effect across various ecosystem types, experimental methods, and climates, and provided a quantitative estimate of plant and soil microbial biomass sensitivity to eCO2. The results obtained in this study suggest that ecosystem models should consider climatic and edaphic factors to more accurately predict the effects of global climate change and their impact on ecosystem functions

    Defining key metabolic roles in osmotic adjustment and ROS homeostasis in the recretohalophyte Karelinia caspia under salt stress

    Get PDF
    The recretohalophyte Karelinia caspia is of forage and medical value and can remediate saline soils. We here assess the contribution of primary/secondary metabolism to osmotic adjustment and ROS homeostasis in Karelinia caspia under salt stress using multiā€omic approaches. Computerized phenomic assessments, tests for cellular osmotic changes and lipid peroxidation indicated that salt treatment had no detectable physical effect on K. caspia. Metabolomic analysis indicated that amino acids, saccharides, organic acids, polyamine, phenolic acids, and vitamins accumulated significantly with salt treatment. Transcriptomic assessment identified differentially expressed genes closely linked to the changes in above primary/secondary metabolites under salt stress. In particular, shifts in carbohydrate metabolism (TCA cycle, starch and sucrose metabolism, glycolysis) as well as arginine and proline metabolism were observed to maintain a low osmotic potential. Chlorogenic acid/vitamin E biosynthesis was also enhanced, which would aid in ROS scavenging in the response of K. caspia to salt. Overall, our findings define key changes in primary/secondary metabolism that are coordinated to modulate the osmotic balance and ROS homeostasis to contribute to the salt tolerance of K. caspia

    Towards Effective Management: Toxicity, Causal Mechanism and Controlling Strategy of Toxic Rangeland Weeds in Western China

    Get PDF
    Toxic rangeland weeds (TRWs) pose a great threat to animal husbandry. Currently, an estimated 33 million hectares of pasture (10%) in western China is infested by a variety of toxic weeds, including Stellera chamaejasme, Oxytropis spp., Astragalus spp., Achnatherum inebrians. The spread of these toxic weeds results in huge annual economic losses of more than $2.4 billion USD (direct and indirect). A combination of ecology, molecular biology, biochemistry and field practise methods will be used to identify and evaluate TRWs, explore the mechanism of toxicity, and more importantly, understand the causal mechanism by which TRWs flourish. The knowledge will underpin the development of effective management strategies

    ROS scavenging and ion homeostasis is required for the adaptation of halophyte Karelinia caspia to high salinity

    Get PDF
    The halophyte Karelinia caspia has not only fodder and medical value but also can remediate saline-alkali soils. Our previous study showed that salt-secreting by salt glands is one of main adaptive strategies of K. caspia under high salinity. However, ROS scavenging, ion homeostasis, and photosynthetic characteristics responses to high salinity remain unclear in K. caspia. Here, physio-biochemical responses and gene expression associated with ROS scavenging and ions transport were tested in K. caspia subjected to 100ā€“400ā€‰mM NaCl for 7ā€†days. Results showed that both antioxidant enzymes (SOD, APX) activities and non-enzymatic antioxidants (chlorogenic acid, Ī±-tocopherol, flavonoids, polyamines) contents were significantly enhanced, accompanied by up-regulating the related enzyme and non-enzymatic antioxidant synthesis gene (KcCu/Zn-SOD, KcAPX6, KcHCT, KcHPT1, KcĪ³-TMT, KcF3H, KcSAMS and KcSMS) expression with increasing concentrations of NaCl. These responses are beneficial for removing excess ROS to maintain a stable level of H(2)O(2) and O(2)(āˆ’) without lipid peroxidation in the K. caspia response to high salt. Meanwhile, up-regulating expression of KcSOS1/2/3, KcNHX1, and KcAVP was linked to Na(+) compartmentalization into vacuoles or excretion through salt glands in K. caspia. Notably, salt can improve the function of PSII that facilitate net photosynthetic rates, which is helpful to growing normally in high saline. Overall, the findings suggested that ROS scavenging systems and Na(+)/K(+) transport synergistically contributed to redox equilibrium, ion homeostasis, and the enhancement of PSII function, thereby conferring high salt tolerance

    Heterologous Expression of a Novel Zoysia japonica C2H2 Zinc Finger Gene, ZjZFN1, Improved Salt Tolerance in Arabidopsis

    Get PDF
    Growing evidence indicates that some grass species are more tolerant to various abiotic and biotic stresses than many crops. Zinc finger proteins play important roles in plant abiotic and biotic stresses. Although genes coding for these proteins have been cloned and identified in various plants, their function and underlying transcriptional mechanisms in the halophyte Zoysia japonica are barely known. In the present study, ZjZFN1 was isolated from Z. japonica using RACE method. Quantitative real time PCR results revealed that the expression of ZjZFN1 was much higher in leaf than in root and stem tissues, and induced by salt, cold or ABA treatment. The subcellular localization assay demonstrated that ZjZFN1 was localized to the nucleus. Expression of the ZjZFN1 in Arabidopsis thaliana improved seed germination and enhanced plant adaption to salinity stress with improved percentage of green cotyledons and growth status under salinity stress. Physiological and transcriptional analyses suggested that ZjZFN1 might, at least in part, influence reactive oxygen species accumulation and regulate the transcription of salinity responsive genes. Furthermore, RNA-sequencing analysis of ZjZFN1-overexpressing plants revealed that ZjZFN1 may serve as a transcriptional activator in the regulation of stress responsive pathways, including phenylalanine metabolism, Ī±-linolenic acid metabolism and phenylpropanoid biosynthesis pathways. Taken together, these results provide evidence that ZjZFN1 is a potential key player in plantsā€™ tolerance to salt stress, and it could be a valuable gene in Z. japonica breeding projects

    Chloroplast genomes of four Carex species: Long repetitive sequences trigger dramatic changes in chloroplast genome structure

    Get PDF
    The chloroplast genomes of angiosperms usually have a stable circular quadripartite structure that exhibits high consistency in genome size and gene order. As one of the most diverse genera of angiosperms, Carex is of great value for the study of evolutionary relationships and speciation within its genus, but the study of the structure of its chloroplast genome is limited due to its highly expanded and restructured genome with a large number of repeats. In this study, we provided a more detailed account of the chloroplast genomes of Carex using a hybrid assembly of second- and third-generation sequencing and examined structural variation within this genus. The study revealed that chloroplast genomes of four Carex species are significantly longer than that of most angiosperms and are characterized by high sequence rearrangement rates, low GC content and gene density, and increased repetitive sequences. The location of chloroplast genome structural variation in the species of Carex studied is closely related to the positions of long repeat sequences; this genus provides a typical example of chloroplast structural variation and expansion caused by long repeats. Phylogenetic relationships constructed based on the chloroplast protein-coding genes support the latest taxonomic system of Carex, while revealing that structural variation in the chloroplast genome of Carex may have some phylogenetic significance. Moreover, this study demonstrated a hybrid assembly approach based on long and short reads to analyze complex chloroplast genome assembly and also provided an important reference for the analysis of structural rearrangements of chloroplast genomes in other taxa
    • ā€¦
    corecore