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The chloroplast genomes of angiosperms usually have a stable circular

quadripartite structure that exhibits high consistency in genome size and gene

order. As one of themost diverse genera of angiosperms,Carex is of great value for

the study of evolutionary relationships and speciation within its genus, but the

study of the structure of its chloroplast genome is limited due to its highly

expanded and restructured genome with a large number of repeats. In this

study, we provided a more detailed account of the chloroplast genomes of

Carex using a hybrid assembly of second- and third-generation sequencing and

examined structural variation within this genus. The study revealed that chloroplast

genomes of four Carex species are significantly longer than that of most

angiosperms and are characterized by high sequence rearrangement rates, low

GC content and gene density, and increased repetitive sequences. The location of

chloroplast genome structural variation in the species of Carex studied is closely

related to the positions of long repeat sequences; this genus provides a typical

example of chloroplast structural variation and expansion caused by long repeats.

Phylogenetic relationships constructed based on the chloroplast protein-coding

genes support the latest taxonomic system of Carex, while revealing that structural

variation in the chloroplast genome of Carex may have some phylogenetic

significance. Moreover, this study demonstrated a hybrid assembly approach

based on long and short reads to analyze complex chloroplast genome

assembly and also provided an important reference for the analysis of structural

rearrangements of chloroplast genomes in other taxa.

KEYWORDS

molecular evolution, plastome, plastid genome, repeats, rearrangement, third-generation
sequencing, Carex, Cyperaceae
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1 Introduction
Chloroplasts are unique organelles of green plants and are the site

of photosynthesis (Smith and Keeling, 2015). The chloroplast genome

has the characteristics of haploid inheritance, relatively small genome,

slow mutation rate, and sufficient polymorphism in plants, making it

a suitable source of data for the study of evolution and is widely used

in studies of phylogeography, population genetics, phylogenetics,

molecular evolution, and genome evolution (Xu et al., 2015;

Marcussen and Meseguer, 2017; Zhai et al., 2019). In recent years,

with the rapid development of high-throughput sequencing

technologies, the assembly of the chloroplast genome of

conventional species has become convenient and inexpensive, and

phylogenetic reconstruction based on the chloroplast genome has led

to a much better understanding of the evolutionary relationships of

angiosperms (Gitzendanner et al., 2018; Liang et al., 2020;

Li et al., 2021).

Due to selection pressure from photosynthesis, the structure of

chloroplast genomes of higher plants is primarily conservative, with a

circular structure divided into four major regions: large single copy

(LSC) and small single copy (SSC) regions separated by two inverted

repeats (IRs) of equal length and sequence inversion complementarity

(Daniell et al., 2016; Henriquez et al., 2020). The chloroplast genome

of land plants is typically 108-165 kb in size and consists of

approximately 80 coding protein genes, 4 ribosomal RNAs

(rRNAs), and 30 transporter RNAs (tRNAs) (Mower and

Vickrey, 2018).

The chloroplast genome is often very stable in angiosperms, but

its variation or structural changes can provide some significance for

phylogenetic studies (Rokas and Holland, 2000; Qiu et al., 2006; Civáň

et al., 2014). In contrast to the expansion and contraction of the IR

region (Blazier et al., 2016; Ruhlman and Jansen, 2018), gene loss, and

pseudogenization (Ruhlman and Jansen, 2014; Sudianto and Chaw,

2019; Li et al., 2021), complex rearrangements involving multiple

events have attracted much attention due to their rarity (Chumley

et al., 2006; Knox, 2014). Some of these highly restructured

chloroplast genomes result from the absence of IR regions with

stable genomic structures (Palmer and Thompson, 1982; Palmer,

1983), such as Trifolium subterraneum (Cai et al., 2008). Chloroplast

genomes with IR regions and with a high number of rearrangement

events have now been found in the gymnosperms and Eudicots

branches of angiosperms, such as Geraniaceae (Weng et al., 2014),

Campanulaceae (Knox, 2014), Hypericaceae (Claude et al., 2022), and

Cupressaceae (Hirao et al., 2008). Some studies have suggested a

relationship between this structural rearrangement and the length and

number of repetitive sequences (Cai et al., 2008; Guisinger et al.,

2011), although the exact reasons remain unclear. The genus Carex,

one of the few branches of the monocotyledons with a significantly

variable chloroplast genome (Wang, 2011), is an important material

for studying structural variation in chloroplast genomes.

With about 2000 species, Carex L. (Cyperaceae), which belongs to

the Poales, is one of the five largest genera of angiosperms (Villaverde

et al., 2020; POWO, 2022). Currently, research progress on the

chloroplast genome of Carex is relatively slow. Only three

chloroplast genomes have been formally reported namely: Carex

agglomerata (Xun et al., 2021), C. myosuroides (Chen et al., 2022),
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and C. laevissima (Ren et al., 2022). These results showed that the

chloroplast genome size of Carex was larger than that of most other

angiosperm species (184,157-188,029 bp), and the GC content was

relatively low (33.9-34.5%). In the above studies, the chloroplast

genome of Carex was not investigated in more detail. Moreover,

Wang (2021) noted that it was difficult to assemble the chloroplast

genome based on short-read data, including raw data from part of the

above studies. This is mainly due to a large number of repetitive

sequences in the chloroplast genome, resulting in complex structural

rearrangements that make it difficult to verify the structure. We

propose that assembly of the Carex chloroplast genome should be

performed in conjunction with long-read data from third-generation

sequencing to facilitate validation and exploration of the complex

rearrangement events.

Currently, the conventional method for assembling chloroplast

genomes is still based on short-read sequencing (second-generation

sequencing), which has the advantage of low cost, high data accuracy,

and a large number of corresponding assembly methods and

programs (Heather and Chain, 2016; Freudenthal et al., 2020).

However, these short reads (no more than 350 bp) can be prone to

misalignment, making it difficult to obtain information about

heterozygous and repetitive regions of the genome (McKenna et al.,

2010). In addition, it is difficult to identify structural variations or

haplotypic structures using only short reads (Scarcelli et al., 2016).

The long reads of third-generation single-molecule sequencing

technology provide a solution for complex chloroplast genomes.

Pacbio SMART DNA sequencing technology can achieve average

read lengths of up to 20 kb and reduce the initial error rate to less than

1% (Rhoads and Au, 2015) and Oxford Nanopore platform can

deliver read lengths greater than 20 kb based on high-quality DNA

material, with error rates of reads as low as 0.5% by integrating read

correction via POA graphs into an assembly pipeline and using

Nanopolish software (Scheunert et al., 2020). In summary, we have

attempted to assemble contigs based on second-generation

sequencing data and reconcile complex rearranged regions with

third-generation sequencing data to complete the assembly of

complex chloroplast genomes such as Carex.

The following questions are addressed in this study: (1) Can the

challenge of assembling the chloroplast genome of Carex be solved by

combining second and third-generation sequencing? (2) What are the

characteristics of the chloroplast genome of Carex and what structural

variations occur? (3) What are the possible causes of these variations?
2 Materials and methods

2.1 Taxon sampling and DNA sequencing

Four taxa representing the four subgenera of Carex were selected

for this study (Supplementary Table S1, Global Carex Group et al.,

2021). For Carex breviculmis, C. lithophila and C. siderosticta fresh

leaves were collected from the living collection of grasses and sedges

of the Beijing Academy of Agriculture and Forestry Sciences. Total

genomic DNA was isolated using the CTAB method (Doyle and

Doyle, 1987). The extracted total genomic DNA was used for library

construction with 2 × 150 bp and 20 kb size libraries and then

sequenced on the Illumina Hiseq 4000 platform and Oxford
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Nanopore PromethION platform for the short and long reads,

respectively, at BenaGen (Wuhan, China, www.benagen.com). In

addition, C. littledalei data are based on the raw data in GenBank

(Access number SRR10513805 is second-generation sequencing -

Illumina data, Access number SRR9056895 is third-generation

sequencing - Pacbio SMRT data).
2.2 Chloroplast genome assembly
and annotation

We followed previous approaches (Wang et al., 2021) and took

advantage of the GetOrganelle pipeline and second- and third-

generation sequencing data to achieve high-quality assembly of the

complex chloroplast genomes ofCarex. First, we used GetOrganelle (Jin

et al., 2020) (https://github.com/Kinggerm/GetOrganelle) to extract the

Illumina sequencing data belonging to the chloroplast and assembled it

into a unitig graph that was manually optimized using Bandage

software (Wick et al., 2015) to eliminate mitochondria- and nucleus-

derived unitig nodes. Subsequently, corrected third-generation

sequencing reads (Carex littledalei from the PacBio platform; C.

breviculmis, C. lithophila and C. siderosticta from the Oxford

Nanopore platform) were mapped onto the graph using the

minimap2 tool (Li, 2018), and chloroplast-derived long reads were

extracted. Then, the repeats on the graph were resolved by alignment

with these long reads and circular DNA was constructed. Finally, we

checked the assembly results using Geneious Prime (Kearse et al., 2012)

to assign the Illumina sequencing reads to the assembled chloroplast

genome. The complete chloroplast genome sequences were annotated

using CPGAVAS2 (Shi et al., 2019), followed by tRNAscan-SE (Chan

et al., 2021) and HS-BLASTN (Chen et al., 2015) for tRNA and rRNA

annotation of the chloroplast genome, respectively. Finally, Apollo

v2.6.6 (Dunn et al., 2019) was used to correct annotation errors in the

chloroplast genomes individually. Illustrations of the four chloroplast

genomes were drawn using OGDRAW software (https://chlorobox.

mpimp-golm.mpg.de/OG Draw.html).
2.3 Codon usage analysis

Codon usage bias was assessed using relative synonymous codon

usage (RSCU) correspondence analysis. RSCU scores the 64 vital

synonymous codons by calculating the ratio between the actually

observed value and the average synonymous codon usage (Wu et al.,

2007). The frequency of codon usage is derived by comparing the RSCU

value to 1. For example, if the RSCU value is greater than 1, it means a

particular codon is used more frequently than other codons (Nabeel-

Shah et al., 2014). The protein-coding genes (PCGs) of the chloroplast

genome were extracted using Phylosuite software (Zhang et al., 2020).

Their protein-coding genes were analyzed for codon preference using

Mega v 7.0 (Kumar et al., 2016) and RSCU values were calculated.
2.4 Repetitive sequences analysis

Microsatellites were determined using MISA-web (Beier et al.,

2017), with a minimum threshold of seven nucleotides for
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mononucleotide repeats: four for di- and three each for tri-, tetra-,

penta-, and hexanucleotide repeats. Dispersal repeats were

determined using the REPuter program (Kurtz et al., 2001,

minimum repeat size 40 bp) and ROUS Finder (Wynn and

Christensen, 2019, default parameters); the program Tandem

evaluated Tandem Repeats Finder (TRF) (Benson, 1999) using the

default parameters.
2.5 Comparative analysis of the
chloroplast genome

Since previously published chloroplast genome sequences of

Carex have not been validated based on three-generation data, and

it is difficult to reassemble them based on their raw data, only the four

species involved in this study were subjected to comparative genomic

analysis. We used mVISTA (Frazer et al., 2004) for the synteny

analysis of four Carex chloroplast genomes using C. siderosticta as a

reference, with default parameters and LAGAN and Shuffle-LAGAN

mode. Multiple genome alignment was performed using Mauve

Alignment of Geneious with default parameters (Darling et al., 2004).
2.6 Phylogenetic analysis

To elucidate the phylogeny of Carex, 18 chloroplast genome data

were downloaded from the NCBI Organelle Genome Resources

database (Supplementary Table S1) and re-annotated using the

Plastid Genome Annotator and manually reviewed in Geneious.

Phylogenetic analysis was performed among 22 samples using

Oryza sativa as the outgroup. Because Carex has a large number of

structural rearrangements, phylogenetic tree reconstruction was

performed using conserved protein-coding genes (PCGs) that were

first aligned multiple times using MAFFT software (Katoh and

Standley, 2013). Subsequently, these alignments were modified to

trim off the gap using Trimal software (Capella-Gutierrez et al., 2009).

The ambiguous alignments were removed from the datasets using a

Python script (https://github.com/HeJian151004/chloroplast_

genome_alignment) (He et al., 2019).

Both the maximum likelihood (ML) method and the Bayesian

inference (BI) method were used for phylogenetic reconstruction. The

ML tree for each dataset was generated by RAxML v.8.1.17

(Stamatakis, 2014) using the GTR+G model as suggested in the

user manual. Bootstrap percentages were calculated after 1,000

replicates. Bayesian inference for each data set was performed using

MrBayes v3.2.3 (Ronquist and Huelsenbeck, 2003). The substitution

models and data partitions of the complete chloroplast genome

dataset for Bayesian analysis were determined using PartitionFinder

v2.1.1 (Lanfear et al., 2017). The best scheme was selected according

to the Bayesian information criterion (BIC). The partitioning of the

other datasets was based on the result of the complete chloroplast

genome dataset. For Bayesian inference, the default priorities in

MrBayes were used for tree search. Two independent Markov chain

Monte Carlo (MCMC) chains were created, each with three heated

and one cold chain, for 2,000,000 generations, with tree selection

every 100 generations. The first 25% of trees were discarded as burn-

in and the remaining trees were used to generate the consensus tree.
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In addition, we used Mauve Alignment of Geneious to sequence

the entire chloroplast genome described above and then removed the

exon sequences from it to subsequently constructed phylogenetic

trees based on the intergenic spacer (IGS) sequence using the

ML methods.
3 Results

3.1 Chloroplast genome
assembly, organization, and nucleotide
composition features

The chloroplast genomes of four Carex species were examined by

mapping raw data and no gap was found. The genome sizes of the

four Carex chloroplasts were 213,818 bp (C. breviculmis), 208,517 bp

(C. littledalei), 195,262 bp (C. siderosticta), and 181,681 bp (Carex

lithophila), respectively. The total GC content was 33.4-34.1%. The

structure of the Carex chloroplast genome is largely consistent with

that of other angiosperms, including the LSC region, the SSC region,

and two inverted repeat regions (IRa/IRb). The length of the LSC

region in the chloroplast genomes of the four Carex species assembled

in this work was 102,285-103,085 bp with a GC content of 31.8-32.1%;

the length of the SSC region was 8,604-8,980 bp with a GC content of

26.9-27.4%; the length of IR was 35,396-51,303 bp with a GC content

of 34.2-36.1% (Table 1). Thus, the enlargement of the chloroplast

genome in Carex is mainly due to the enlargement of the IR region,

which is 51,303 bp in C. breviculmis, resulting in an expanded

chloroplast genome of 213,818 bp.

By reviewing the chloroplast genome annotation information using

Geneious software, 102 functional genes were encoded in the

chloroplast genome of the four Carex species studied, including 70

protein-coding genes, 28 tRNA genes, and 4 rRNA genes (Table 1). The
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protein-coding genes included 13 gene families: 11 genes were

associated with NADH dehydrogenase subunit coding; 5 genes were

associated with photosystem I subunit coding; 15 genes were associated

with photosystem II subunit coding; 6 genes were associated with

cytochrome b/f complex; 6 genes were associated with ATP synthesis; 7

genes were linked to the large subunit of the ribosome; 10 genes were

linked to the small subunit of the ribosome; 3 genes were linked to

DNA-dependent RNA polymerase; 4 genes were linked respectively to

the formation of the large subunit of Rubisco, maturase, C-type

envelope membrane protein, and cytochrome synthesis; 3 genes were

of unknown function and open reading. The chloroplast genome of

Carex species also exhibited partial gene loss, such as accD (involved in

acetyl-coenzyme A carboxylase synthesis), clpP (encoding a proteolytic

subunit of ATP-dependent Clp protease), and ycf1 (encoding Tic214

protein). Due to the considerable extension of the IR region, the

number of duplicated genes in the IR region of C. breviculmis is also

significantly higher than in the other three species (29 > 22).
3.2 Relative synonymous codon usage

The codon usage frequency of 70 coding genes for 4 Carex species

was estimated (Figure 1). The usage of each amino acid pair is listed in

Supplementary Table S2. UGA, UAG, and UAA were considered as

termination codons, and the RSCU value of UAA was not less than

1.5. For these Carex species, we found that UUA-encoded leucine had

the highest RSCU value of approximately 2.32 and CUG-encoded

leucine had the lowest RSCU value of approximately 0.26.

The chloroplast genomes of all four Carex species showed similar

codon preferences. For example, leucine (Leu) had a very high

preference for UUA with the highest average RSCU value of 2.36

among the chloroplast PCGs, followed by serine (Ser), which also

showed a very high preference for UCU codons with an average
TABLE 1 Detailed information on chloroplast genomes of four Carex species.

C. breviculmis C. lithophila C. littledalei C. siderosticta

Total cp genome size (bp) 213,818 181,681 208,517 195,262

Length of inverted repeat region (bp) 51,303 35,396 48,391 41,905

Length of large single copy region (bp) 102,355 102,285 103,085 102,472

Length of small single copy region (bp) 8,857 8,604 8,650 8,980

Total GC content (%) 33.4 34.1 34 34.1

GC content of LSC (%) 32 31.8 32.1 32.1

GC content of IR (%) 34.2 36.1 35.1 35.5

GC content of SSC (%) 27.1 27.4 26.9 27.3

Coding size (bp) 74,058 70,877 70,754 70,810

Noncoding size (bp) 139,760 110,804 137,763 124,452

Total number of genes 102 102 102 102

Number of protein-encoding genes 70 70 70 70

Number of tRNA genes 28 28 28 28

Number of rRNA genes 4 4 4 4

Number of genes duplicated in IR 29 22 22 22
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RSCU value of 2.02. Arginine (Arg), proline (Pro), and threonine

(Thr) also had a strong preference for using codons with maximum

RSCU values greater than 1.80. In addition, RSCU values of four

Carex species showed significantly lower nucleotide abundance of G

or C than of A or T at the third codon position (14.7 < 45.3); this is

similar to other studies of chloroplast genomes (Poczai and Hyvonen,

2017; Ren et al., 2021; Guo et al., 2022).
3.3 Long-repeat and simple
sequence repeat

In this study, the dispersal repeats of Carex and its close relatives

Eleocharis cellulosa (Cyperaceae) and Oryza sativa (Poaceae) were

analyzed using the REPuter program (Kurtz et al., 2001), and two

types of repeats were detected in all species: Forward repeats and

palindromic repeats (Figure 2A, Supplementary Table S3). In this

study (parameter settings: Hamming distance = 1, minimum repeat =

40 bp), 466-3834 dispersal repeats were detected in four species of

Carex, 234 in E. cellulose, and only 11 inO. sativa. The tandem repeats

also showed similar results, with 95-108 tandem repeats in the four

species of Carex, significantly higher than in E. cellulosa (63) and O.

sativa (23). These were mainly observed in 60 bp+ long repeats: the

number of tandem repeats over 60 bp in the four species of Carex

accounted for 10.19-21.05%, significantly higher than their

proportions in E. cellosa and O. sativa (0-4.35%) (Figure 2B,

Supplementary Table S5).

To better represent the situation of repeat sequences in Carex, i.e.,

excluding redundant repeats with overlapping regions, we used the

software ROUS finder to count the dispersal repeats of Carex species

(Wynn and Christensen, 2019). The four Carex species had 198, 178,

114, and 123 sets of repeats longer than or equal to 50 bp, with 89, 78,
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36, and 46 repeats longer than 100 bp (Figure 3B, Supplementary

Table S4), respectively, with Carex breviculmis having the largest

number of repeats longer than 100 bp with a total length of 78,915 bp,

representing 36.91% of the total length of the chloroplast genome.

Simple sequence repeats (SSRs), also called microsatellite

sequences, are repeat sequences consisting of 1-6 bp linked in

tandem as repeat units and are important for the study of plant

populations (Powell et al., 1995). SSRs are widely distributed in

chloroplast genomes, play a key role in species identification, and

are used as important genetic markers to study population genetics

and evolution (Zane et al., 2002; Yan et al., 2019). A total of 93-113

SSRs were detected in the chloroplast genomes of four Carex species

(Supplementary Table S6), with the percentage of SSRs in monomeric

and dimeric forms ranging from 81.72% (C. siderosticta) to 84.55%

(C. littledalei) (Figure 3A). The most common types of dinucleotide

repeats were TA (C. breviculmis, C. lithophila) and AT (C. littledalei,

C. siderosticta). Hexa-nucleotide repeats were not detected in any of

the four Carex species, and only pentanucleotide repeats were found

in the chloroplast genomes of C. lithophila and C. siderosticta.
3.4 Structural variation in the chloroplast
genome of Carex

The chloroplast genome sequence of Carex breviculmis was used

as a reference sequence to show analogy between the genomic

sequences of four Carex chloroplast genomes using mVISTA

analysis. The results of the LAGAN-based and shuffle-LAGAN

alignment programs are quite different (Figure 4), suggesting that

there are many structural rearrangements and fragment inversions in

Carex. Compared to the LSC and IR regions, the SSC and its proximal

regions of Carex species showed higher consistency in gene order.
FIGURE 1

Analysis of codon preferences in the chloroplast genomes of four Carex species.
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Alignment of the whole chloroplast genome of four Carex species

was performed in Mauve Alignment of Geneious. The local collinear

blocks (LCBs) identified by Mauve alignment were color-coded to

identify genome rearrangements (Figure 5). The comparison clearly

shows that there are a large number of structural rearrangements in

the chloroplast genomes of the four Carex species. Structural

rearrangements of the chloroplast genome occur not only in Carex

but also in Cyperaceae and Poales (Supplement Figure S2).To better

characterize the structural variation of the four Carex species, we

mapped the syntenic regions (shown as arrows in Figure 6) in their

chloroplast genomes based on gene order. As Figure 6 shows, the

chloroplast genome structures of the four Carex species are very

complex with many syntenic regions. Not only do these syntenic

regions show altered order between species, but the whole order of

genes within the syntenic regions is often altered (the inverted arrow

regions indicate that the order of genes is reversed). We marked the

positions of the repeats above 60 bp using the Geneious software,

shown above the arrows in Figure 6. The denser the blue line segment,

the more repeats are at that location. It is noteworthy that the

endpoints of the rearrangements strongly overlap with the common

repetitive sequences of the species, such as rps2-petD, rpl33-rps16,

rps12-ndhB, rrn5S-ndhH in C. breviculmis. Thus, we conclude that
Frontiers in Plant Science 06
the complex chloroplast genome structure of Carex species is closely

related to the high proportion of repetitive sequences mentioned

earlier. This is also an important reason for the difficulties in

assembling the Carex chloroplast genome based on Illumina data in

previous studies, where assembly based on short reads was easily

hampered by numerous repeats between syntenic regions.
3.5 Phylogenetic relationships in Carex

Because of the large number of structural rearrangements in the

chloroplast genome of Carex and the low colinearity of non-coding

regions in this species, it is difficult to align and conduct phylogenetic

analysis based on whole chloroplast genome data. Phylogenetic

analysis was performed using the union of PCGs of 21 species, with

Oryza sativa of Poaceae and 7 species of Cyperaceae selected as

outgroups. Both ML and BI analyses of the complete chloroplast

revealed identical topologies with strong support at each node [ML

bootstrap (BS) > 95, Bayesian posterior probabilities (PP) = 1]

(Figure 7). With our limited sampling, the relationships retrieved

nonetheless reflect the relationships in the Cyperaceae family as in

Larridon et al. (2021), with Carex resolved as sister to the clade
A

B

FIGURE 2

Statistics of repeats in the four chloroplast genomes of Carex and its relatives. (A) The number of different dispersal repeats in six chloroplast genomes
using the REPuter program. P, Palindromic, F, Forward; (B) The number of tandem repeat rearrangements in the six chloroplast genomes and the
proportion of their length range.
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Eleocharis + Bolboschoenus + Isolepis + Cyperus (BS/PP = 100/1). The

genus Carex is divided into four branches (clade A, clade B, clade C,

clade D) corresponding to C. subg. Siderosticta, C. subg. Euthyceras,

C. subg. Carex, and C. subg. Vignea, which is consistent with the most

recent taxonomic system of Carex (Global Carex Group et al., 2021).

C. siderosticta is at the base of Carex and taxa formerly belonging to

Kobresia, such as C. littledalei, C. myosuroides, are in clade B, which is

sister related to clade C + clade D. In this study, phylogenetic

relationships in Carex based on chloroplast PCGs support the most

recent Carex taxonomic system and are also consistent with previous

phylogenetic relationships constructed based on low copy nuclear

orthologous nuclear loci derived from the Cyperaceae-specific

HybSeq bait kit. (Villaverde et al., 2020; Global Carex Group et al.,

2021). The phylogenetic tree constructed based on the IGS sequences

has a very consistent tree-like structure, further supporting the above

results (Supplement Figure S3).
4 Discussion

Although Carex is one of the largest genera of angiosperms, there

has been a lack of in-depth studies on its chloroplast genome

evolution due to its large number of repetitive sequences and

relatively complex structural variation. In this study, clear pictures

of the chloroplast genome structure of four Carex species were

obtained by combining second- and third-generation sequencing

data (Supplementary Figure S1). Although no structural

heteroplasmy similar to that of the Eleocharis plastome was found

in Carex, the extreme abundance of repetitive sequences and the
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complex rearrangements of the chloroplast within this genus provide

a valuable model for the study of chloroplast genome variation.
4.1 Third-generation sequencing facilitates
the assembly of complex chloroplast
genomes

For most species, second-generation sequencing has become the

primary data source for chloroplast genome assembly due to its easy

sequence acquisition, high accuracy, and favorable price. Chloroplast

genomes assembled based on Illumina sequencing are regarded as the

“gold standard” for data quality and integrity (Scheunert et al., 2020).

Freudenthal et al. (2020) analyzed conventional chloroplast assembly

methods and concluded that GetOrganelle (Jin et al., 2020) and Fast-

Plast (McKain and Wilson, 2017) can provide convenient and rapid

assembly methods with accurate Illumina data. However, taxa such as

Pelargonium (Chumley et al., 2006), Trifolium (Sveinsson and Cronk,

2014), and Carex are difficult to assemble by conventional assembly

methods based on Illumina data due to the presence of abundant

repeats and rearrangements. In this case, assembly between contigs of

complex chloroplast genomes assembled based on second-generation

data in Carex is often complex because of the large number of

repetitive sequences that are difficult to bridge at the nodes where

long repeats occur. Third-generation sequencing technologies

generally have longer read lengths that can effectively determine the

assembly mode of the above nodes at high coverage and greatly

improve the accuracy of complex chloroplast assemblies (Wu et al.,

2014; Scheunert et al., 2020).
A

B

FIGURE 3

Statistics of the repeats in the four Carex chloroplast genomes. (A) Analysis of microsatellite repeats. (B) Analysis of dispersal repeats based on ROUS Finder.
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A

B

FIGURE 4

Sequence alignment of fourCarex species using the programmVISTA. A cut-off value of 70% similarity was used for the plot, and the Y scale indicates the percent
similarity between 50 and 100%. Blue represents coding regions and pink represents non-coding regions. (A) LAGANmethod; (B) Shuffle LAGANmethod.
FIGURE 5

Mauve alignment of four Carex chloroplast genomes. Complete chloroplast genome sequences were aligned in Geneious using the Mauve algorithm for linear
comparison of rearrangements across the Carex. Locally collinear blocks (LCBs) are coloured to indicate syntenic regions. Histograms within each block
represent the degree of sequence similarity. Inversions resulting in strand change are represented as offset LCBs (below). The small boxes below each chloroplast
genome indicate genes; upper and lower boxes are transcribed counterclockwise and clockwise, respectively. Red boxes indicate ribosomal RNA genes.
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Figure 8 shows the variability of assemblies of the same species

(Carex siderosticta) based on different datasets and methods. We used

the sequence (ON920465) assembled with a hybrid of second- and

third- generation data and were able to show higher accuracy in

mapping reads as a reference, while the sequence (KP751906) showed

some problems with assembly results between rpl20-petD, ndhD-

ndhE, and so on. Such discrepancies are probably due to incorrect

assembly caused by a large number of repeats. With the rapid

development of third-generation sequencing technologies, especially

the rapid proliferation of MinION devices that are inexpensive and

easy to install in most laboratories (Freudenthal et al., 2020), it is

possible to optimize previous assembly results based on Illumina

sequences in combination with long read-length sequences to achieve

assembly of complex chloroplast genomes and perform in-depth

studies on their structural variation features. This study

demonstrates a suitable case for the assembly of complex

chloroplast genomes with a large number of repetitive sequences

that may be helpful for the subsequent assembly of related species.
4.2 The chloroplast genome characters of
four Carex species

All four Carex species studied have chloroplast genomes of well

above average length (151 kb, Ruhlman and Jansen, 2014), with C.

breviculmis (213,818 bp) having one of the longest chloroplast genomes
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of land plants reported to date. In addition to the expansion of the region

IR, which occurs in most angiosperms and results in their larger

chloroplast genomes, such as in Pelargonium × hortorum, Musa

acuminata, Cyphia crenata, etc. (Martin et al., 2013; Weng et al., 2017;

Li et al., 2020), the increase in chloroplast genome size in Carex is also

accompanied by an increase in the number and size of repetitive

sequences. Similar results were found in Eleocharis, another genus of

Cyperaceae (Lee et al., 2020). The gene numbers and species of the four

Carex species are highly consistent (Table 1), and the differences in

chloroplast genome length within their genera are mainly due to IR

contraction and expansion, with C. breviculmis having a significantly

expanded IR region (51,303 bp). In conjunction with phylogenetic

studies (Figure 6), it is likely that chloroplast genomes of Carex species

undergo multiple expansions and contractions.

The chloroplast GC content of four Carex species was relatively

low, similar to other taxa in the Cyperaceae (Ren et al., 2021) and

significantly lower than in the Poaceae (Supplementary Table S1). It is

worth noting that IR has a higher GC content than the SC region

(Table 1) and the IR of the Carex species chloroplast genome is

significantly expanded (35,396-51,303 bp), so the expansion of IR

should have resulted in a higher GC content. The still significantly

lower than average overall GC content of Carex species is largely due

to the widespread repetitive sequences in the intergenic spacer regions

within their chloroplast genomes and their extremely low GC content

(24.40-26.08%), and such a pattern is also found in the chloroplast

genomes of Eleocharis (Supplementary Table S1, Lee et al., 2020).
FIGURE 6

Comparative analysis of differences in chloroplast genomes of four Carex species. Bayesian consensus trees based on PCGs are placed on the left. The
upper part of the image of each species shows the location of repeats (> 60 bp) in the chloroplast genome; the middle part shows the syntenic regions
(arrows) and their directions, arrows of the same color represent syntenic regions between the different species; the lower part shows the map of the
chloroplast genome drawn with OGDRAW software.
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In the chloroplast genome, gene loss is a relatively rare genome-

shaping event that can provide important information for our

understanding of the phylogenetic relationships between genes and

between species (Harris et al., 2013). In the present study, we found

some events of gene deletion in all four Carex species, such as the

accD, clpP, and ycf1 genes. Previously, the accD gene was thought to

be the subject of widespread deletion or pseudogenization in Poales

(Harris et al., 2013; Wysocki et al., 2016). However, the evolutionary

history of this gene within Cyperaceae remains controversial due to

limited and conflicting data (Poczai and Hyvönen, 2017; Lee et al.,

2020). None of the four Carex species involved in this study contained

the accD gene, which is present only in basal taxa within the

Cyperaceae (Supplementary Table S7), indicating that the accD

gene has also undergone at least one gene loss event within the

Cyperaceae. A generally accepted explanation for the widespread

occurrence of deletions is that accD is located in regions with high

mutation rates (Ogihara et al., 1991; Maier et al., 1995). Similarly,

gene loss also occurs in other specific coding genes, which often have

more SNPs than any other coding motifs, such as clpP, ycf1, in Carex.

Such divergent results may be due to aberrant DNA duplication,

repair, or recombination during the evolution of their common

ancestor (Guisinger et al., 2008; Dugas et al., 2015).

It is now widely accepted that the use of synonymous codons is

not random and that analysis of codon preferences can provide

valuable information for understanding species adaptation and
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molecular evolution (Plotkin and Kudla, 2011; Leffler et al., 2012).

The chloroplast genomes of four Carex species contain 30 high-

frequency codons (RSCU > 1) and prefers codons ending in A/T,

similar to other closely related taxa (Poczai and Hyvonen, 2017;

Chakraborty et al., 2020; Ren et al., 2021; Guo et al., 2022). Variation

in codon bias among Carex species was not significant, with only

minor differences in optimal codons for valine (Val) (GUA in C.

littledalei, with GUU in C. breviculmis, C. lithophila, C. siderosticta).
4.3 Structural variation in the chloroplast
genome of Carex

It appears that Carex species have one of the most restructured

chloroplast genomes of angiosperms sequenced to date, with a large

number of rearrangement events in their chloroplast genome and

corresponding changes in the position and sequence of many genes.

The structure of the chloroplast genome of Carex is closer to that of

taxa such as Geranium than to that of Trifolium, where the absence of

a region IR leads to a large number of rearrangements (Cai et al.,

2008). The chloroplast genomes of all four Carex species have been

shown to have a circular quadripartite structure and also to have a

significantly higher number of repetitive sequences than those of

closely related taxa, with the differences being greatest for the long

repeats (> 60 bp). Furthermore, this study supports the idea that
FIGURE 7

Bayesian consensus tree of Carex species based on PCGs. Bootstrap values of maximum likelihood (ML) and predictive probability values (PP) are given at
each branches. Chloroplast genomes assembled in this study are highlighted in red. (A) C subg. Siderosticta; (B) C subg. Euthyceras; (C) C subg. Carex;
(D) C subg. Vignea.
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rearrangements in the chloroplast genome are significantly correlated

with repeats, especially long repeats, by graphically showing that long

repeats occur very frequently at rearrangement endpoints in the

chloroplast genome (Weng et al., 2014) (Figure 6). Notably, such

association is also found in the highly rearrangement genomes of

Pelargonium (Chumley et al., 2006), Trifolium (Sveinsson and Cronk,

2014) and Trachelium (Haberle et al., 2008). Our results also show

that the number of repeats positively correlates with the degree of

rearrangement of the chloroplast genome in Carex, with the

chloroplast genomes of C. breviculmis having the most repeats and

also suffering the most extensive rearrangements. Although we are

unable to determine the exact mechanism of genome rearrangement,

it is reasonable to assume that repeats play an important role in

genome rearrangement and sequence divergence through illegitimate

recombination and slipped-strand mispairing (Rogalski et al., 2006;

Timme et al., 2007; Gray et al., 2009).

Molecular rearrangements in the chloroplast are important because

their fixation in the genome during evolution is rare (Downie and

Palmer, 1992; Lee et al., 2007). The rearrangement features of the

chloroplast genome may also provide some phylogenetic significance

(Cosner et al., 2004). This study demonstrated that Carex siderosticta

and C. littledalei are more closely related and show higher chloroplast

genome collinearity, with only one reversal in the red arrow region

(atpA-rps2) and one change in position in the brown arrow (rps12-

rpl20) (Figure 6). C. breviculmis and C. lithophila have the reverse order

of the other two species in the blue arrow region (petD-rpl33) and may

have undergone a flip-flop event in their common ancestor.

C. breviculmis shows the highest level of chloroplast genome

rearrangement than in other taxa due to the presence of most

repeats, and several additional insertions of collinear regions within

the IR region resulting in a significant increase in sequence length.

However, the phylogenetic relationships of the four Carex species

provide only limited information on the evolutionary history of
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structural variation in their chloroplast genomes, and a more in-

depth analysis of the evolution of chloroplast genomes within the

genus requires the sequence and structural characterization of

additional species.
5 Conclusion

In this study, the chloroplast genomes of four Carex species were

assembled and annotated using Illumina and third generation

sequencing (PacBio SMRT and Nanopore) data to provide new

insights into the evolution of chloroplast genomes in Carex.

Compared to conventional species, Carex chloroplast genomes are

characterized by a large number of repetitive sequences and low GC

content. We found that a high frequency of long repeats is found at

the rearrangement termini, strongly suggesting that long repeats can

induce structural variation in the chloroplast genome.
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Mauve alignment of chloroplast genomes of 8 species in Cyperaceae andOryza

sativa (Poaceae). Complete chloroplast genome sequences were aligned in
Geneious using the Mauve algorithm for linear comparison of rearrangements

across the Cyperaceae. Locally collinear blocks (LCBs) are coloured to indicate
syntenic regions. Histograms within each block represent the degree of

sequence similarity. Inversions resulting in strand change are represented as

offset LCBs (below). The small boxes below each chloroplast genome indicate
genes; upper and lower boxes are transcribed counterclockwise and clockwise,

respectively. Red boxes indicate ribosomal RNA genes.

SUPPLEMENTARY FIGURE 3

Maximum likelihood (ML) tree of Carex species based on IGS sequence.

Bootstrap values of ML are given at each branch. Chloroplast genomes

assembled in this study are highlighted in red. A: C. subg. Siderosticta; B: C.
subg. Euthyceras; C: C. subg. Carex; D: C. subg. Vignea.
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Dispersal repeats analysis of the chloroplast genomes of four Carex species and

two of their relatives using REPuter software.
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Dispersal repeats analysis of the chloroplast genomes of four Carex species
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