95 research outputs found

    The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions

    Get PDF
    All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3’-phosphoadenosine 5’-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfoglucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGI SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.DFG/PA/764/10-

    Improved resource efficiency and cascading utilisation of renewable materials

    Get PDF
    In light of various environmental problems and challenges concerning resource allocation, the utilisation of renewable resources is increasingly important for the efficient use of raw materials. Therefore, cascading utilisation (i.e., the multiple material utilisations of renewable resources prior to their conversion into energy) and approaches that aim to further increase resource efficiency (e.g., the utilisation of by-products) can be considered guiding principles. This paper therefore introduces the Special Volume “Improved Resource Efficiency and Cascading Utilisation of Renewable Materials”. Because both research aspects, resource efficiency and cascading utilisation, belong to several disciplines, the Special Volume adopts an interdisciplinary perspective and presents 16 articles, which can be divided into four subjects: Innovative Materials based on Renewable Resources and their Impact on Sustainability and Resource Efficiency, Quantitative Models for the Integrated Optimisation of Production and Distribution in Networks for Renewable Resources, Information Technology-based Collaboration in Value Generating Networks for Renewable Resources, and Consumer Behaviour towards Eco-friendly Products. The interdisciplinary perspective allows a comprehensive overview of current research on resource efficiency, which is supplemented with 15 book reviews showing the extent to which textbooks of selected disciplines already refer to resource efficiency. This introductory article highlights the relevance of the four subjects, presents summaries of all papers, and discusses future research directions. The overall contribution of the Special Volume is that it bridges the resource efficiency research of selected disciplines and that it presents several approaches for more environmentally sound production and consumption

    Treatment of Semantic Heterogeneity in Information Retrieval

    Full text link
    "Nowadays, users of information services are faced with highly decentralised, heterogeneous document sources with different content analysis. Semantic heterogeneity occurs e.g. when resources using different systems for content description are searched using a single query system. This report describes several approaches of handling semantic heterogeneity used in projects of the German Social Science Information Centre." (author's abstract

    Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism

    Get PDF
    Sulphotransferases are a diverse group of enzymes catalysing the transfer of a sulfuryl group from 3'-phosphoadenosine 5'-phosphosulphate (PAPS) to a broad range of secondary metabolites. They exist in all kingdoms of life. In Arabidopsis thaliana (L.) Heynh. twenty-two sulphotransferase (SOT) isoforms were identified. Three of those are involved in glucosinolate (Gl) biosynthesis, glycosylated sulphur-containing aldoximes containing chemically different side chains, whose break-down products are involved in stress response against herbivores, pathogens, and abiotic stress. To explain the differences in substrate specificity of desulpho (ds)-Gl SOTs and to understand the reaction mechanism of plant SOTs, we determined the first high-resolution crystal structure of the plant ds-Gl SOT AtSOT18 in complex with 3'-phosphoadenosine 5'-phosphate (PAP) alone and together with the Gl sinigrin. These new structural insights into the determination of substrate specificity were complemented by mutagenesis studies. The structure of AtSOT18 invigorates the similarity between plant and mammalian sulphotransferases, which illustrates the evolutionary conservation of this multifunctional enzyme family. We identified the essential residues for substrate binding and catalysis and demonstrated that the catalytic mechanism is conserved between human and plant enzymes. Our study indicates that the loop-gating mechanism is likely to be a source of the substrate specificity in plants.DFG/PA 764/10-1DFG/FE 1510/2-1EC/Marie Curie Fellowship 625451 SUPA-H

    Cold performance tests of blocked-impurity-band Si:As detectors developed for DARWIN

    Full text link
    We report first results of laboratory tests of Si:As blocked-impurity-band (BIB) mid-infrared (4 to 28 um) detectors developed by IMEC. These prototypes feature 88 pixels hybridized on an integrated cryogenic readout electronics (CRE). They were developed as part of a technology demonstration program for the future DARWIN mission. In order to be able to separate detector and readout effects, a custom build TIA circuitry was used to characterize additional single pixel detectors. We used a newly designed test setup at the MPIA to determine the relative spectral response, the quantum efficiency, and the dark current. All these properties were measured as a function of operating temperature and detector bias. In addition the effects of ionizing radiation on the detector were studied. For determining the relative spectral response we used a dual-grating monochromator and a bolometer with known response that was operated in parallel to the Si:As detectors. The quantum efficiency was measured by using a custom-build high-precision vacuum black body together with cold (T ~ 4 K) filters of known (measured) transmission.Comment: 11 pages, 8 figures, to appear in "High Energy, Optical, and Infrared Detectors for Astronomy" SPIE conference Proc. 7021, Marseille, 23-28 June 200

    National registry for patients with inflammatory rheumatic diseases (IRD) infected with SARS-CoV-2 in Germany (ReCoVery): a valuable mean to gain rapid and reliable knowledge of the clinical course of SARS-CoV-2 infections in patients with IRD

    Get PDF
    Objectives: Patients with inflammatory rheumatic diseases (IRD) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be at risk to develop a severe course of COVID-19. The influence of immunomodulating drugs on the course of COVID-19 is unknown. To gather knowledge about SARS-CoV-2 infections in patients with IRD, we established a registry shortly after the beginning of the pandemic in Germany. Methods Using an online questionnaire (www.COVID19-rheuma.de.), a nationwide database was launched on 30 March 2020, with appropriate ethical and data protection approval to collect data of patients with IRD infected with SARS-CoV-2. In this registry, key clinical and epidemiological parameters-for example, diagnosis of IRD, antirheumatic therapies, comorbidities and course of the infection-are documented. Results Until 25 April 2020, data from 104 patients with IRD infected with SARS-CoV-2 were reported (40 males;63 females;1 diverse). Most of them (45%) were diagnosed with rheumatoid arthritis, 59% had one or more comorbidities and 42% were treated with biological disease-modifying antirheumatic drugs. Hospitalisation was reported in 32% of the patients. Two-thirds of the patients already recovered. Unfortunately, 6 patients had a fatal course. Conclusions: In a short time, a national registry for SARS-CoV2-infected patients with IRD was established. Within 4 weeks, 104 cases were documented. The registry enables to generate data rapidly in this emerging situation and to gain a better understanding of the course of SARS-CoV2-infection in patients with IRD, with a distinct focus on their immunomodulatory therapies. This knowledge is valuable for timely information of physicians and patients with IRD, and shall also serve for the development of guidance for the management of patients with IRD during this pandemic

    BioRock:new experiments and hardware to investigate microbe–mineral interactions in space

    Get PDF
    In this paper, we describe the development of an International Space Station experiment, BioRock. The purpose of this experiment is to investigate biofilm formation and microbe–mineral interactions in space. The latter research has application in areas as diverse as regolith amelioration and extraterrestrial mining. We describe the design of a prototype biomining reactor for use in space experimentation and investigations on in situ Resource Use and we describe the results of pre-flight tests
    corecore