34 research outputs found

    Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Get PDF
    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats

    Clinical and Functional Characterization of URAT1 Variants

    Get PDF
    Idiopathic renal hypouricaemia is an inherited form of hypouricaemia, associated with abnormal renal handling of uric acid. There is excessive urinary wasting of uric acid resulting in hypouricaemia. Patients may be asymptomatic, but the persistent urinary abnormalities may manifest as renal stone disease, and hypouricaemia may manifest as exercise induced acute kidney injury. Here we have identified Macedonian and British patients with hypouricaemia, who presented with a variety of renal symptoms and signs including renal stone disease, hematuria, pyelonephritis and nephrocalcinosis. We have identified heterozygous missense mutations in SLC22A12 encoding the urate transporter protein URAT1 and correlate these genetic findings with functional characterization. Urate handling was determined using uptake experiments in HEK293 cells. This data highlights the importance of the URAT1 renal urate transporter in determining serum urate concentrations and the clinical phenotypes, including nephrolithiasis, that should prompt the clinician to suspect an inherited form of renal hypouricaemia

    A qualitative analysis of Vietnamese adolescent identity exploration within and outside an ethnic enclave.

    No full text
    Focusing on identity development explorations enables a greater understanding of contexts that affect immigrant adolescents. Utilizing thematic and grounded narrative analysis of 46 journal writings, during a one-month period, from first and second generation Vietnamese adolescents ranging in age from 15 to 18 (26 residents of a culturally and politically active ethnic enclave in Southern California; 20 adolescents living outside the enclave), this study establishes ways in which a focus on social context and exploration processes illuminates the complexity of immigrant adolescents’ identity formation. The two groups shared many similarities, including precipitants to exploration and steps undertaken to explore identity. However, two factors—social and cultural influences and emotional reactions—revealed interesting contrasts distinguishing enclave from non-enclave dwelling Vietnamese adolescents. Data also suggested that immigrant adolescents strive to integrate different domains of identity (ethnicity, gender, career) both with one another and with the historical, social, and cultural contexts they occupy

    Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies

    No full text
    Michael F Wempe,1 Janet W Lightner,2 Bettina Miller,1 Timothy J Iwen,1 Peter J Rice,1 Shin Wakui,3 Naohiko Anzai,4 Promsuk Jutabha,4 Hitoshi Endou51Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; 2Department of Pharmacology, East Tennessee State University, Johnson City, TN, USA; 3Department of Toxicology, Azabu University School of Veterinary Medicine, Chuo Sagamihara, Kanagawa, Japan; 4Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Shimotsuga, Tochigi, Japan; 5Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, JapanAbstract: Human uric acid transporter 1 (hURAT1; SLC22A12) is a very important urate anion exchanger. Elevated urate levels are known to play a pivotal role in cardiovascular diseases, chronic renal disease, diabetes, and hypertension. Therefore, the development of potent uric acid transport inhibitors may lead to novel therapeutic agents to combat these human diseases. The current study investigates small molecular weight compounds and their ability to inhibit 14C-urate uptake in oocytes expressing hURAT1. Using the most promising drug candidates generated from our structure–activity relationship findings, we subsequently conducted in vitro hepatic metabolism and pharmacokinetic (PK) studies in male Sprague-Dawley rats. Compounds were incubated with rat liver microsomes containing cofactors nicotinamide adenine dinucleotide phosphate and uridine 5'-diphosphoglucuronic acid. In vitro metabolism and PK samples were analyzed using liquid chromatography/mass spectrometry-mass spectrometry methods. Independently, six different inhibitors were orally (capsule dosing) or intravenously (orbital sinus) administered to fasting male Sprague-Dawley rats. Blood samples were collected and analyzed; these data were used to compare in vitro and in vivo metabolism and to compute noncompartmental model PK values. Mono-oxidation (Phase I) and glucuronidation (Phase II) pathways were observed in vitro and in vivo. The in vitro data were used to compute hepatic intrinsic clearance, and the in vivo data were used to compute peak blood concentration, time after administration to achieve peak blood concentration, area under the curve, and orally absorbed fraction. The experimental data provide additional insight into the hURAT1 inhibitor structure–activity relationship and in vitro–in vivo correlation. Furthermore, the results illustrate that one may successfully prepare potent inhibitors that exhibit moderate to good oral bioavailability.Keywords: benzbromarone analogs, bioavailability, glucuronidation, oxidation, structure–activity relationshi

    Developing Potent Human Uric Acid Transporter 1 (hURAT1) Inhibitors

    No full text
    The kidneys are a vital organ in the human body. They serve several purposes including homeostatic functions such as regulating extracellular fluid volume, maintaining acid-base and electrolyte balance, and are essential regarding the excretion of metabolic waste. Furthermore, the kidneys play an important role in uric acid secretion/re-absorption. Abnormalities associated with kidney transporters have been associated with various diseases, such as gout. The current study utilized Xenopus oocytes expressing human uric acid transporter 1 (hURAT1; SLC22A12) as an in vitro method to investigate novel compounds and their ability to inhibit (14)C-uric acid uptake via hURAT1. We have prepared and tested a series of 2-ethyl-benzofuran compounds and probed the hURAT1 in vitro inhibitor structure-activity relationship (SAR). Compared to di-methoxy analogs, mono-phenols formed on the C-Ring showed the best in vitro inhibitory potential. Compounds with sub-micromolar (i.e. IC(50) < 1000 nM) inhibitors were prepared by brominating the corresponding phenols to produce compounds with potent uricosuric activity
    corecore