32 research outputs found

    ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy.

    Get PDF
    ATM is a kinase involved in DNA damage response (DDR), regulation of response to oxidative stress, autophagy and mitophagy. Mutations in the ATM gene in humans result in ataxi A-Telangiectasia disease (A-T) characterized by a variety of symptoms with neurodegeneration and premature ageing among them. Since brain is one of the most affected organs in A-T, we have focused on senescence of neural progenitor cells (NPCs) derived from A-T reprogrammed fibroblasts. Accordingly, A-T NPCs obtained through neural differentiation of iPSCs in 5% oxygen possessed some features of senescence including increased activity of SA-β-gal and secretion of IL6 and IL8 in comparison to control NPCs. This phenotype of A-T NPC was accompanied by elevated oxidative stress. A-T NPCs exhibited symptoms of impaired autophagy and mitophagy with lack of response to chloroquine treatment. Additional sources of oxidative stress like increased oxygen concentration (20 %) and H2O2 respectively aggravated the phenotype of senescence and additionally disturbed the process of mitophagy. In both cases only A-T NPCs reacted to the treatment. We conclude that oxidative stress may be responsible for the phenotype of senescence and impairment of autophagy in A-T NPCs. Our results point to senescent A-T cells as a potential therapeutic target in this disease

    Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution

    Get PDF
    Moraxella catarrhalis is a common human respiratory tract pathogen. Its virulence factors associated with whole bacteria or outer membrane vesicles (OMVs) aid infection, colonization and may induce specific antibodies. To investigate pathogen-host interactions, we applied integrated bioinformatic and immunoproteomic (2D-electrophoresis, immunoblotting, LC-MS/MS) approaches. We showed that OMV proteins engaged exclusively in complement evasion and colonization strategies, but not those involved in iron transport and metabolism, are major targets for cross-reacting antibodies produced against phylogenetically divergent M. catarrhalis strains. The analysis of 31 complete genomes of M. catarrhalis and other Moraxella revealed that OMV protein-coding genes belong to 64 orthologous groups, five of which are restricted to M. catarrhalis. This species showed a two-fold increase in the number of OMV protein-coding genes relative to its ancestors and animal-pathogenic Moraxella. The appearance of specific OMV factors and the increase in OMV-associated virulence proteins during M. catarrhalis evolution is an interesting example of pathogen adaptation to optimize colonization. This precisely targeted cross-reactive immunity against M. catarrhalis may be an important strategy of host defences to counteract this phenomenon. We demonstrate that cross-reactivity is closely associated with the anti-virulent antibody repertoire which we have linked with adaptation of this pathogen to the host

    Increased activity of the sterol branch of the mevalonate pathway elevates glycosylation of secretory proteins and improves antifungal properties of Trichoderma atroviride.

    Get PDF
    Some Trichoderma spp. have an ability to inhibit proliferation of fungal plant pathogens in the soil. Numerous compounds with a proven antifungal activity are synthesized via the terpene pathway. Here, we stimulated the activity of the mevalonate pathway in T. atroviride P1 by expressing the Saccharomyces cerevisiae ERG20 gene coding for farnesyl pyrophosphate (FPP) synthase, a key enzyme of this pathway. ERG20-expressing Trichoderma strains showed higher activities of FPP synthase and squalene synthase, the principal recipient of FPP in the mevalonate pathway. We also observed activation of dolichyl phosphate mannose (DPM) synthase, an enzyme in protein glycosylation, and significantly increased O- and N-glycosylation of secreted proteins. The hyper-glycosylation of secretory hydrolases could explain their increased activity observed in the ERG20 transformants. Analysis of the antifungal properties of the new strains revealed that the hydrolases secreted by the transformants inhibited growth of a plant pathogen, Pythium ultimum more efficiently compared to the control strain. Consequently, the biocontrol activity of the transgenic strains, determined as their ability to protect bean seeds and seedlings against harmful action of P. ultimum, was also improved substantially

    Systems Genome:Coordinated Gene Activity Networks, Recurring Coordination Modules, and Genome Homeostasis in Developing Neurons

    Get PDF
    Simple Summary: A synchronized global genome is a flexible, homeostatic system that underwrites ontogenic development and deprograming in disease. Abstract: As human progenitor cells differentiate into neurons, the activities of many genes change; these changes are maintained within a narrow range, referred to as genome homeostasis. This process, which alters the synchronization of the entire expressed genome, is distorted in neurodevelopmental diseases such as schizophrenia. The coordinated gene activity networks formed by altering sets of genes comprise recurring coordination modules, governed by the entropy-controlling action of nuclear FGFR1, known to be associated with DNA topology. These modules can be modeled as energy-transferring circuits, revealing that genome homeostasis is maintained by reducing oscillations (noise) in gene activity while allowing gene activity changes to be transmitted across networks; this occurs more readily in neuronal committed cells than in neural progenitors. These findings advance a model of an “entangled” global genome acting as a flexible, coordinated homeostatic system that responds to developmental signals, is governed by nuclear FGFR1, and is reprogrammed in disease

    Synthesis of Dolichols in Candida albicans is Co-Regulated With Elongation of Fatty Acids

    Get PDF
    Abstract: Protein glycosylation requires dolichyl phosphate as a carbohydrate carrier. Dolichols are α-saturated polyprenols, and their saturation in S. cerevisiae is catalyzed by polyprenyl re-ductase Dfg10 together with some other unknown enzymes. The aim of this study was to identi-fy such enzymes in Candida. The Dfg10 polyprenyl reductase from S. cerevisiae comprises a C-terminal 3-oxo-5-alpha-steroid 4-dehydrogenase domain. Alignment analysis revealed such a domain in two ORFs (orf19.209 and orf19.3293) from C. albicans, which were similar, respective-ly, to Dfg10 polyprenyl reductase and Tsc13 enoyl-transferase from S. cerevisiae. Deletion of orf19.209 in Candida impaired saturation of polyprenols. The Tsc13 homologue turned out not to be capable of saturating polyprenols, but limiting its expression reduce the cellular level of dol-ichols and polyprenols. This reduction was not due to a decreased expression of genes encoding cis-prenyltransferases from the dolichol branch but to a lower expression of genes encoding en-zymes of the early stages of the mevalonate pathway. Despite the resulting lower consumption of acetyl-CoA, the sole precursor of the mevalonate pathway, it was not redirected towards fatty acid synthesis or elongation. Lowering the expression of TSC13 decreased the expression of the ACC1 gene encoding acetyl-CoA carboxylase, the key regulatory enzyme of fatty acid synthesis and elongation

    Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study

    Get PDF
    Background Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex. Methods CKD patients (>= 65 years; estimated glomerular filtration rate <= 20 mL/min/1.73 m(2)) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off <= 70; 0-100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders. Results Overall kidney function decline in 1326 patients was -0.12 mL/min/1.73 m(2)/month. A total of 515 patients showed depressive symptoms. No significant association was found between depressive symptoms and kidney function over time (P = 0.08). Unlike women, men with depressive symptoms had an increased mortality rate compared with those without symptoms [adjusted hazard ratio 1.41 (95% confidence interval 1.03-1.93)]. Depressive symptoms were not significantly associated with a higher hazard of dialysis initiation, or with the combined outcome (i.e. dialysis initiation and all-cause mortality). Conclusions There was no significant association between depressive symptoms at baseline and decline in kidney function over time in older patients with advanced CKD. Depressive symptoms at baseline were associated with a higher mortality rate in men

    Genes Involved in DNA Repair and Mitophagy Protect Embryoid Bodies from the Toxic Effect of Methylmercury Chloride under Physioxia Conditions

    No full text
    The formation of embryoid bodies (EBs) from human pluripotent stem cells resembles the early stages of human embryo development, mimicking the organization of three germ layers. In our study, EBs were tested for their vulnerability to chronic exposure to low doses of MeHgCl (1 nM) under atmospheric (21%O2) and physioxia (5%O2) conditions. Significant differences were observed in the relative expression of genes associated with DNA repair and mitophagy between the tested oxygen conditions in nontreated EBs. When compared to physioxia conditions, the significant differences recorded in EBs cultured at 21% O2 included: (1) lower expression of genes associated with DNA repair (ATM, OGG1, PARP1, POLG1) and mitophagy (PARK2); (2) higher level of mtDNA copy number; and (3) higher expression of the neuroectodermal gene (NES). Chronic exposure to a low dose of MeHgCl (1 nM) disrupted the development of EBs under both oxygen conditions. However, only EBs exposed to MeHgCl at 21% O2 revealed downregulation of mtDNA copy number, increased oxidative DNA damage and DNA fragmentation, as well as disturbances in SOX17 (endoderm) and TBXT (mesoderm) genes expression. Our data revealed that physioxia conditions protected EBs genome integrity and their further differentiation

    Nitroxyl (HNO/NO-) - an enigmatic molecule with unique properties and pharmacological potential

    No full text
    Tlenki azotu biorą udział w wielu fizjologicznych procesach i są cząsteczkami o potencjalnym znaczeniu farmakologicznym. Odkrycie, że tlenek azotu jest czynnikiem rozkurczowym pochodzenia śródbłonkowego (EDRF) spowodowało wzrost liczby badań dotyczących tego związku. Przez wiele lat nitroksyl (HNO/NO-), produkt jednoelektronowej redukcji NO∙, nie był przedmiotem zainteresowania naukowców, czego przyczyną był brak dowodów potwierdzających endogenną produkcję HNO in vivo - nie opracowano dotychczas prostej metody umożliwiającej bezpośrednią jego detekcję. Nitroksyl jest cząsteczką niestabilną, co sprawia, że w badaniach biologicznych muszą być stosowane donory tego związku. Najbardziej powszechnie stosowanym donorem jest sól Angeli`ego (Na2N2O3), która generuje HNO w warunkach fizjologicznych. Wykazano, że nitroksyl preferencyjnie reaguje z białkami zawierającymi grupy hemowe, a także z tiolami, dzięki czemu wpływa na aktywność wielu ważnych enzymów zawierających w miejscach aktywnych grupy -SH. Wykazano, że nitroksyl, podobnie jak tlenek azotu, posiada dodatnie właściwości inotropowe (podnosi siłę skurczu mięśnia serca), jak również luzytropowe (umożliwia relaksację mięśnia sercowego), które przyczyniają się do zwiększenia pojemności minutowej serca. HNO okazał się również związkiem potencjalnie antykancyrogennym. Wpływa na proces glikolizy (hamuje aktywność dehydrogenazy aldehydu 3-fosfoglicerynowego, GAPDH), który jest głównym źródłem energii dla komórek raka. Ponadto, nitroksyl hamuje angiogenezę i indukuje apoptozę w komórkach nowotworowych. Unikatowe właściwości nitroksylu spowodowały w ostatnich latach znaczny wzrost zainteresowania tą cząsteczką. W niniejszej pracy omówiono chemiczne i biologiczne właściwości nitroksylu, a także jego potencjał farmakologiczny.Nitrogen oxides are involved in many physiological processes and have the potential to be useful pharmacological agents. The discovery that nitric oxide (NO∙) is endothelial derived relaxing factor (EDRF) has lead to an increase of research in this field. For many years, nitroxyl (HNO/NO-) which is one-electron reduction product of NO∙, has been overlooked, probably because no mechanism of endogenous in vivo HNO production has been clearly established - mainly due to a lack of a direct detection method of the compound. It is inherently unstable molecule so the studies on its biological properties must be done with the use of donor compounds. The most common donor currently used is Angeli's salt (Na2N2O3), which releases HNO at physiological pH. It was shown that nitroxyl can react preferentially with ferric heme proteins and also with thiols and thus could influence the activity of many important enzymes with -SH groups in the active site. Similar to nitric oxide, nitroxyl has been shown to cause vasoleraxation and moreover, it has positive inotropic (force of muscle contraction) as well as lusitropic (relaxation of cardiac muscle) properties which both contribute to increased cardiac output. In addition to these effects HNO has been shown promising anticancer compound. It influences glycolysis process (nitroxyl inhibits activity of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) which is a major energy source for cancer cells. Furthermore, HNO inhibits angiogenesis and induces cancer cell apoptosis. Because of unique properties of nitroxyl there has been a significant increase in interest in this molecule in the past few years. Herein, some of the chemical and biological activities and the pharmacological potential of HNO are described

    Genes Involved in DNA Repair and Mitophagy Protect Embryoid Bodies from the Toxic Effect of Methylmercury Chloride under Physioxia Conditions

    No full text
    The formation of embryoid bodies (EBs) from human pluripotent stem cells resembles the early stages of human embryo development, mimicking the organization of three germ layers. In our study, EBs were tested for their vulnerability to chronic exposure to low doses of MeHgCl (1 nM) under atmospheric (21%O2) and physioxia (5%O2) conditions. Significant differences were observed in the relative expression of genes associated with DNA repair and mitophagy between the tested oxygen conditions in nontreated EBs. When compared to physioxia conditions, the significant differences recorded in EBs cultured at 21% O2 included: (1) lower expression of genes associated with DNA repair (ATM, OGG1, PARP1, POLG1) and mitophagy (PARK2); (2) higher level of mtDNA copy number; and (3) higher expression of the neuroectodermal gene (NES). Chronic exposure to a low dose of MeHgCl (1 nM) disrupted the development of EBs under both oxygen conditions. However, only EBs exposed to MeHgCl at 21% O2 revealed downregulation of mtDNA copy number, increased oxidative DNA damage and DNA fragmentation, as well as disturbances in SOX17 (endoderm) and TBXT (mesoderm) genes expression. Our data revealed that physioxia conditions protected EBs genome integrity and their further differentiation
    corecore