71 research outputs found

    Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses

    Get PDF
    Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody–antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design

    Production of prostaglandin E2 in response to infection with modified vaccinia Ankara virus

    Get PDF
    AbstractProstaglandin E2 (PGE2) is an arachidonic acid (AA)-derived signaling molecule that can influence host immune responses to infection or vaccination. In this study, we investigated PGE2 production in vitro by cells infected with the poxvirus vaccine strain, modified vaccinia Ankara virus (MVA). Human THP-1 cells, murine bone marrow-derived dendritic cells, and murine C3HA fibroblasts all accumulated PGE2 to high levels in culture supernatants upon infection with MVA. We also demonstrated that MVA induced the release of AA from infected cells, and this was, most unusually, independent of host cytosolic phospholipase A2 activity. The accumulation of AA and PGE2 was dependent on viral gene expression, but independent of canonical NF-κB signaling via p65/RelA. The production of PGE2 required host cyclooxygenase-2 (COX-2) activity, and COX-2 protein accumulated during MVA infection. The results of this study provide insight into a novel aspect of MVA biology that may affect the efficacy of MVA-based vaccines

    Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001

    Get PDF
    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. IMPORTANCE: The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used

    Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay

    Get PDF
    Several different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied

    Isolation of HIV-1-Neutralizing Mucosal Monoclonal Antibodies from Human Colostrum

    Get PDF
    BACKGROUND: Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. METHODS: We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). RESULTS: The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. CONCLUSIONS: These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces

    ADCC-activating antibodies correlate with decreased risk of congenital human cytomegalovirus transmission

    Get PDF
    Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence indicates that antibody Fc effector functions may be a previously underappreciated component of maternal immunity against HCMV. We recently reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with protection against cCMV transmission, leading us to hypothesize that additional Fc-mediated antibody functions may be important. In this same cohort of HCMV-transmitting (n = 41) and nontransmitting (n = 40) mother-infant dyads, we report that higher maternal sera antibody–dependent cellular cytotoxicity (ADCC) activation is also associated with lower risk of cCMV transmission. We investigated the relationship between ADCC and IgG responses against 9 viral antigens and found that ADCC activation correlated most strongly with sera IgG binding to the HCMV immunoevasin protein UL16. Moreover, we determined that higher UL16-specific IgG binding and FcγRIII/CD16 engagement were associated with the greatest risk reduction in cCMV transmission. Our findings indicate that ADCC-activating antibodies against targets such as UL16 may represent an important protective maternal immune response against cCMV infection that can guide future HCMV correlates studies and vaccine or antibody-based therapeutic development

    Impact of Poxvirus Vector Priming, Protein Coadministration, and Vaccine Intervals on HIV gp120 Vaccine-Elicited Antibody Magnitude and Function in Infant Macaques

    Get PDF
    ABSTRACT Despite success in reducing vertical HIV transmission by maternal antiretroviral therapy, several obstacles limit its efficacy during breastfeeding, and breast-milk transmission is now the dominant mode of mother-to-child transmission (MTCT) of HIV in infants. Thus, a pediatric vaccine is needed to eradicate oral HIV infections in newborns and infants. Utilizing the infant rhesus macaque model, we compared 3 different vaccine regimens: (i) HIV envelope (Env) protein only, (ii) poxvirus vector (modified vaccinia virus Ankara [MVA])-HIV Env prime and HIV Env boost, and (iii) coadministration of HIV Env and MVA-HIV Env at all time points. The vaccines were administered with an accelerated, 3-week-interval regimen starting at birth for early induction of highly functional HIV Env-specific antibodies. We also tested whether an extended, 6-week immunization interval using the same vaccine regimen as in the coadministration group would enhance the quality of antibody responses. We found that pediatric HIV vaccines administered at birth are effective in inducing HIV Env-specific plasma IgG. The vaccine regimen consisting of only HIV Env protein induced the highest levels of variable region 1 and 2 (V1V2)-specific antibodies and tier 1 neutralizing antibodies, whereas the extended-interval regimen induced both persistent Env-specific systemic IgG and mucosal IgA responses. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies in plasma were elicited by all vaccine regimens. These data suggest that infant immunizations beginning at birth are effective for the induction of functional HIV Env-specific antibodies that could potentially protect against breast milk transmission of HIV and set the stage for immunity prior to sexual debut

    Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques

    Get PDF
    Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials

    Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk

    Get PDF
    ABSTRACT Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT

    Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope-Specific Plasma Antibodies in Infant Rhesus Macaques

    Get PDF
    A better understanding of the impact of early innate immune responses after vaccine priming on vaccine-elicited adaptive immune responses could inform rational design for effective HIV vaccines. The current study compared the whole blood molecular immune signatures of a 3M-052-SE adjuvanted HIV Env protein vaccine to a regimen combining the adjuvanted Env protein with simultaneous administration of a modified Vaccinia Ankara vector expressing HIV Env in infant rhesus macaques at days 0, 1, and 3 post vaccine prime. Both vaccines induced a rapid innate response, evident by elevated inflammatory plasma cytokines and altered gene expression. We identified 25 differentially-expressed genes (DEG) on day 1 compared to day 0 in the HIV protein vaccine group. In contrast, in the group that received both the Env protein and the MVA-Env vaccine only two DEG were identified, implying that the MVA-Env modified the innate response to the adjuvanted protein vaccine. By day 3, only three DEG maintained altered expression, indicative of the transient nature of the innate response. The DEG represented immune pathways associated with complement activation, type I interferon and interleukin signaling, pathogen sensing, and induction of adaptive immunity. DEG expression on day 1 was correlated to Env-specific antibody responses, in particular antibody-dependent cytotoxicity responses at week 34, and Env-specific follicular T helper cells. Results from network analysis supported the interaction of DEG and their proteins in B cell activation. These results emphasize that vaccine-induced HIV-specific antibody responses can be optimized through the modulation of the innate response to the vaccine prime
    • …
    corecore