5,153 research outputs found

    The nature of power corrections in large β0\beta_0 approximation

    Full text link
    We investigate the nature of power corrections and infrared renormalon singularities in large β0\beta_0 approximation. We argue that the power correction associated with a renormalon pole singularity should appear at O(1), in contrast to the renormalon ambiguity appearing at O(1/β0)O(1/\beta_0), and give an explanation why the leading order renormalon singularities are generically poles.Comment: 6 page

    Effective Exchange Rate Classifications and Growth

    Get PDF
    We propose an econometric procedure for obtaining de facto exchange rate regime classifications which we apply to study the relationship between exchange rate regimes and economic growth. Our classification method models the de jure regimes as outcomes of a multinomial logit choice problem conditional on the volatility of a country's effective exchange rate, a bilateral exchange rate and international reserves. An `effective' de facto exchange rate regime classification is then obtained by assigning country-year observations to the regime with the highest predictive probability obtained from the estimation problem. An econometric investigation into the relationship between exchange rate regimes and GDP growth finds that growth is higher under stable currency-value regimes. Significant asymmetric effects on country growth from not doing what is said are found for nonindustrialized countries. Countries that exhibit `fear of floating' experience significantly higher growth.

    The Effect of Interactions on the Conductance of Graphene Nanoribbons

    Full text link
    We study the effects of the interaction between electrons and holes on the conductance G of quasi-one-dimensional graphene systems. We first consider as a benchmark the limit in which all interactions are negligible, recovering the predictions of the tight-binding approximation for the spectrum of the system, and the well-known result G=4 e^2/h for the lowest conductance quantum. Then we consider an exactly solvable field theoretical model in which the electro-magnetic interactions are effectively local. Finally, we use the effective field theory formalism to develop an exactly solvable model in which we also include the effect of non-local interactions. We find that such interactions turn the nominally metallic armchair graphene nanoribbon into a semi-conductor, while the short-range interactions lead to a correction to the G=4 e^2/h formula.Comment: 9 pages, 1 figur

    Effect of age on the prognostic value of left ventricular function in patients with acute coronary syndrome:a prospective registry study

    Get PDF
    Objective: This study aims to study the prognostic impact of LV function on mortality and examine the effect of age on the prognostic value of left ventricular function.  Methods: We examined the Myocardial Ischaemia National Audit Project (MINAP) registry (2006-2010) data with a mean follow up of 2.1 years. LV function was categorized into good (ejection fraction (EF) ≥50%), moderate (EF 30-49%) and poor (EF <30%) categories. Cox-proportional hazards models were constructed to examine the prognostic significance of LV function in different age groups (<65, 65-74, 75-84 and ≥85 years) on all-cause mortality adjusting for baseline variables.  Results: Of 424,848 patients, LV function data available for 123,609. Multiple imputations were used to impute missing values of LV function and the final sample for analyses were drawn from 414,305. After controlling for confounders, 339,887 participants were included in the regression models. For any age group, mortality was higher with worsening degree of LV impairment. Increased age reduced the adverse prognosis associated with reduced LV function (hazard ratios (HRs) of death comparing poor LV function to good LV function were 2.11 95%CI 1.88-2.37 for age <65 years and 1.28 95%CI 1.20-1.36 for age ≥85 years. Older patients had a high mortality risk even in those with good LV function. HRs of mortality for ≥85 compared to <65 years (HR=1.00) within good, moderate and poor ejection fractions groups were 5.89, 4.86 and 3.43, respectively.  Conclusions: In patients with ACS, clinicians should interpret the prognostic value of LV function taking into account patient’s age

    Non-saturating large magnetoresistance in semimetals

    Full text link
    The rapidly expanding class of quantum materials known as {\emph{topological semimetals}} (TSM) display unique transport properties, including a striking dependence of resistivity on applied magnetic field, that are of great interest for both scientific and technological reasons. However, experimental signatures that can identify or discern the dominant mechanism and connect to available theories are scarce. Here we present the magnetic susceptibility (χ\chi), the tangent of the Hall angle (tanθH\tan\theta_H) along with magnetoresistance in four different non-magnetic semimetals with high mobilities, NbP, TaP, NbSb2_2 and TaSb2_2, all of which exhibit non-saturating large MR. We find that the distinctly different temperature dependences, χ(T)\chi(T) and the values of tanθH\tan\theta_H in phosphides and antimonates serve as empirical criteria to sort the MR from different origins: NbP and TaP being uncompensated semimetals with linear dispersion, in which the non-saturating magnetoresistance arises due to guiding center motion, while NbSb2_2 and TaSb2_2 being {\it compensated} semimetals, with a magnetoresistance emerging from nearly perfect charge compensation of two quadratic bands. Our results illustrate how a combination of magnetotransport and susceptibility measurements may be used to categorize the increasingly ubiquitous non-saturating large magnetoresistance in TSMs.Comment: Accepted for publication at Proc. Natl. Acad. Sci., minor revisions, 6 figure

    A newborn embodied Turing test for view-invariant object recognition

    Full text link
    Recent progress in artificial intelligence has renewed interest in building machines that learn like animals. Almost all of the work comparing learning across biological and artificial systems comes from studies where animals and machines received different training data, obscuring whether differences between animals and machines emerged from differences in learning mechanisms versus training data. We present an experimental approach-a "newborn embodied Turing Test"-that allows newborn animals and machines to be raised in the same environments and tested with the same tasks, permitting direct comparison of their learning abilities. To make this platform, we first collected controlled-rearing data from newborn chicks, then performed "digital twin" experiments in which machines were raised in virtual environments that mimicked the rearing conditions of the chicks. We found that (1) machines (deep reinforcement learning agents with intrinsic motivation) can spontaneously develop visually guided preference behavior, akin to imprinting in newborn chicks, and (2) machines are still far from newborn-level performance on object recognition tasks. Almost all of the chicks developed view-invariant object recognition, whereas the machines tended to develop view-dependent recognition. The learning outcomes were also far more constrained in the chicks versus machines. Ultimately, we anticipate that this approach will help researchers develop embodied AI systems that learn like newborn animals.Comment: 7 Pages. 4 figures, 1 table. This paper was accepted to the CogSci 2023 Conference. (https://cognitivesciencesociety.org/

    Correlation between microstructure and magnetotransport in organic semiconductor spin valve structures

    Full text link
    We have studied magnetotransport in organic-inorganic hybrid multilayer junctions. In these devices, the organic semiconductor (OSC) Alq3_3 (tris(8-hydroxyquinoline) aluminum) formed a spacer layer between ferromagnetic (FM) Co and Fe layers. The thickness of the Alq3_3 layer was in the range of 50-150 nm. Positive magnetoresistance (MR) was observed at 4.2 K in a current perpendicular to plane geometry, and these effects persisted up to room temperature. The devices' microstructure was studied by X-ray reflectometry, Auger electron spectroscopy and polarized neutron reflectometry (PNR). The films show well-defined layers with modest average chemical roughness (3-5 nm) at the interface between the Alq3_3 and the surrounding FM layers. Reflectometry shows that larger MR effects are associated with smaller FM/Alq3_3 interface width (both chemical and magnetic) and a magnetically dead layer at the Alq3_3/Fe interface. The PNR data also show that the Co layer, which was deposited on top of the Alq3_3, adopts a multi-domain magnetic structure at low field and a perfect anti-parallel state is not obtained. The origins of the observed MR are discussed and attributed to spin coherent transport. A lower bound for the spin diffusion length in Alq3_3 was estimated as 43±543 \pm 5 nm at 80 K. However, the subtle correlations between microstructure and magnetotransport indicate the importance of interfacial effects in these systems.Comment: 21 pages, 11 figures and 2 table

    Path integral evaluation of the one-loop effective potential in field theory of diffusion-limited reactions

    Full text link
    The well-established effective action and effective potential framework from the quantum field theory domain is adapted and successfully applied to classical field theories of the Doi and Peliti type for diffusion controlled reactions. Through a number of benchmark examples, we show that the direct calculation of the effective potential in fixed space dimension d=2d=2 to one-loop order reduces to a small set of simple elementary functions, irrespective of the microscopic details of the specific model. Thus the technique, which allows one to obtain with little additional effort, the potentials for a wide variety of different models, represents an important alternative to the standard model dependent diagram-based calculations. The renormalized effective potential, effective equations of motion and the associated renormalization group equations are computed in d=2d=2 spatial dimensions for a number of single species field theories of increasing complexity.Comment: Plain LaTEX2e, 32 pages and three figures. Submitted to Journal of Statistical Physic
    corecore