53 research outputs found

    Kinetic analysis of an efficient DNA-dependent TNA polymerase.

    Get PDF
    alpha-l-Threofuranosyl nucleoside triphosphates (tNTPs) are tetrafuranose nucleoside derivatives and potential progenitors of present-day beta-d-2'-deoxyribofuranosyl nucleoside triphosphates (dNTPs). Therminator DNA polymerase, a variant of the 9 degrees N DNA polymerase, is an efficient DNA-directed threosyl nucleic acid (TNA) polymerase. Here we report a detailed kinetic comparison of Therminator-catalyzed TNA and DNA syntheses. We examined the rate of single-nucleotide incorporation for all four tNTPs and dNTPs from a DNA primer-template complex and carried out parallel experiments with a chimeric DNA-TNA primer-DNA template containing five TNA residues at the primer 3'-terminus. Remarkably, no drop in the rate of TNA incorporation was observed in comparing the DNA-TNA primer to the all-DNA primer, suggesting that few primer-enzyme contacts are lost with a TNA primer. Moreover, comparison of the catalytic efficiency of TNA synthesis relative to DNA synthesis at the downstream positions reveals a difference of no greater than 5-fold in favor of the natural DNA substrate. This disparity becomes negligible when the TNA synthesis reaction mixture is supplemented with 1.25 mM MnCl(2). These results indicate that Therminator DNA polymerase can recognize both a TNA primer and tNTP substrates and is an effective catalyst of TNA polymerization despite changes in the geometry of the reactants

    High fidelity TNA synthesis by Therminator polymerase

    Get PDF
    Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis at different temperatures, incubation times, tNTP ratios and primer/template combinations. TNA synthesis by Therminator exhibits high fidelity under optimal conditions; the observed fidelity is sufficient to allow in vitro selection with TNA libraries of at least 200 nt in length

    Nanog-Independent Reprogramming to iPSCs with Canonical Factors

    Get PDF
    Summary It has been suggested that the transcription factor Nanog is essential for the establishment of pluripotency during the derivation of embryonic stem cells and induced pluripotent stem cells (iPSCs). However, successful reprogramming to pluripotency with a growing list of divergent transcription factors, at ever-increasing efficiencies, suggests that there may be many distinct routes to a pluripotent state. Here, we have investigated whether Nanog is necessary for reprogramming murine fibroblasts under highly efficient conditions using the canonical-reprogramming factors Oct4, Sox2, Klf4, and cMyc. In agreement with prior results, the efficiency of reprogramming Nanog−/− fibroblasts was significantly lower than that of control fibroblasts. However, in contrast to previous findings, we were able to reproducibly generate iPSCs from Nanog−/− fibroblasts that effectively contributed to the germline of chimeric mice. Thus, whereas Nanog may be an important mediator of reprogramming, it is not required for establishing pluripotency in the mouse, even under standard conditions

    Efficient generation and transcriptomic profiling of human iPSC-derived pulmonary neuroendocrine cells

    Get PDF
    Expansion of pulmonary neuroendocrine cells (PNECs) is a pathological feature of many human lung diseases. Human PNECs are inherently difficult to study due to their rarity (\u3c1% of total lung cells) and a lack of established protocols for their isolation. We used induced pluripotent stem cells (iPSCs) to generate induced PNECs (iPNECs), which express core PNEC markers, including ROBO receptors, and secrete major neuropeptides, recapitulating known functions of primary PNECs. Furthermore, we demonstrate that differentiation efficiency is increased in the presence of an air-liquid interface and inhibition of Notch signaling. Single-cell RNA sequencing (scRNA-seq) revealed a PNEC-associated gene expression profile that is concordant between iPNECs and human fetal PNECs. In addition, pseudotime analysis of scRNA-seq results suggests a basal cell origin of human iPNECs. In conclusion, our model has the potential to provide an unlimited source of human iPNECs to explore PNEC pathophysiology associated with several lung diseases

    Effect of Stalling after Mismatches on the Error Catastrophe in Nonenzymatic Nucleic Acid Replication

    Get PDF
    The frequency of errors during genome replication limits the amount of functionally important information that can be passed on from generation to generation. During the origin of life, mutation rates are thought to have been quite high, raising a classic chicken-and-egg paradox: could nonenzymatic replication propagate sequences accurately enough to allow for the emergence of heritable function? Here we show that the theoretical limit on genomic information content may increase substantially as a consequence of dramatically slowed polymerization after mismatches. As a result of postmismatch stalling, accurate copies of a template tend to be completed more rapidly than mutant copies and the accurate copies can therefore begin a second round of replication more quickly. To quantify this effect, we characterized an experimental model of nonenzymatic, template-directed nucleic acid polymerization. We found that most mismatches decrease the rate of primer extension by more than 2 orders of magnitude relative to a matched (Watson-Crick) control. A chemical replication system with this property would be able to propagate sequences long enough to have function. Our study suggests that the emergence of functional sequences during the origin of life would be possible even in the face of the high intrinsic error rates of chemical replication

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
    corecore