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Abstract 

The reprogramming of somatic cells to pluripotency using defined transcription 

factors holds great promise for biomedicine. However, human reprogramming remains 

inefficient and relies either on the use of the potentially dangerous oncogenes KLF4 

and CMYC or the genetic inhibition of the tumor suppressor gene p53. We 

hypothesized that inhibition of signal transduction pathways that promote 

differentiation of the target somatic cells during development might relieve the 

requirement for non-core pluripotency factors during iPSC reprogramming.  Here, we 

show that inhibition of Notch significantly improves the efficiency of iPSC generation 

from mouse and human keratinocytes by suppressing p21 in a p53-independent 

manner and thereby enriching for undifferentiated cells capable of long-term self-

renewal. Pharmacological inhibition of Notch enabled routine production of human 

iPSCs without KLF4 and CMYC while leaving p53 activity intact. Thus, restricting the 

development of somatic cells by altering intercellular communication enables the 

production of safer human iPSCs. 

 

Use of the potent oncogenes KLF4 and CMYC in the generation of induced 

pluripotent stem cells (iPSCs) limits their translational utility 1,2. Currently, elimination of 

these genes during human iPSC reprogramming requires suppression of p53 activity 2-16, 

which in turn results in the accumulation of genetic mutations in the resulting iPSCs 8. 

Therefore, there remains a real need for reprogramming approaches that enable iPSC 

generation without the use of KLF4 and CMYC while leaving p53 activity intact.  



In part to address this need, several groups have undertaken chemical screens to 

identify small molecules that can improve reprogramming 17-21.  Thus far, the majority of 

active compounds are thought to improve reprogramming by inhibiting chromatin-

modifying enzymes or by reinforcing the transcriptional network associated with the 

pluripotent state 17-22. Consistent with their proposed mechanisms of action, these 

chemicals generally function in cellular intermediates that arise late in reprogramming, 

catalyzing their final conversion into iPSCs 19,22. It is currently unclear whether known 

chemicals are sufficient for generating iPSCs from adult human cells, which are 

consistently more difficult to reprogram than mouse embryonic fibroblasts 23.  

Given the likely need for additional reprogramming chemicals and the knowledge 

that most known compounds act late in this process, we reasoned it would be valuable to 

identify small molecules that improve reprogramming by acting early, perhaps within the 

somatic cells themselves. We reasoned that one approach towards this goal would be to 

identify chemicals that could modulate signal transduction cascades in somatic cell 

populations to enrich for those cells with an enhanced capacity for reprogramming. We 

reasoned that if such compounds could be identified, they might expand the translational 

utility of chemical reprogramming. 

 It has been recognized that the extent of a target cell’s differentiation is an 

important determinant of the efficiency by which it can be reprogrammed 24-26. We 

therefore hypothesized that chemically driving somatic cells into a more potent “stem 

cell” state might improve their reprogramming. To test this hypothesis, we chose to ask 

whether known chemical inhibitors of the Notch signaling pathway could aid in 

reprogramming.  



The Notch signaling pathway is highly conserved and regulates the proliferation 

and differentiation of many distinct progenitor cell and stem cell types 27. Notch ligands 

are generally transmembrane proteins that require contact between two cells in order to 

mediate signal transduction 28. In skin, Notch promotes differentiation by directly 

activating p21 expression, which in turn blocks proliferation and induces the 

differentiation of keratinocyte stem cell populations 29,30. We therefore hypothesized that 

inhibition of Notch in keratinocytes might enhance iPSC generation by inhibiting 

differentiation and enriching more easily reprogrammed progenitor cells.  We also felt 

that keratinocytes were an attractive model for testing our hypothesis because if Notch 

inhibition did have an effect, it could be immediately translated to the production of 

patient-specific iPSCs 31,32.  

Here, we show that Notch inhibition significantly improves the efficiency of iPSC 

generation from mouse and human keratinocytes by suppressing p21 and thereby 

enriching undifferentiated cells with increased reprogramming potential. In addition, 

pharmacological inhibition of Notch enabled the efficient production of human iPSCs 

without KLF4 and CMYC while leaving p53 activity intact, resulting in the production of 

safer human iPSCs. 



 

Results 

DAPT treatment promotes keratinocyte reprogramming 

Notch signaling is activated by the γ-secretase complex, which cleaves the 

membrane-tethered Notch receptor upon ligand binding and generates a free intracellular 

domain that can translocate to the nucleus and modulate transcription 27. It has previously 

been shown that the γ-secretase inhibitor DAPT (Fig. 1a) can block Notch signaling in 

mouse keratinocytes 33. As expected, 10 µM DAPT treatment of both neonatal mouse and 

human keratinocytes transduced with the iPSC reprogramming factors increased 

abundance of the full-length Notch receptor, reduced levels of cleaved Notch intracellular 

domain (NICD) (Supplementary Results, Supplementary Fig. 1a), and decreased 

expression of the Notch-target genes Hey1, Hes1, Hes5, and Col6a1 (Supplementary Fig. 

1b).  

To determine whether inhibition of Notch could increase the efficiency of 

reprogramming, we transduced Oct4::GFP mouse or human keratinocytes with Oct4, 

Sox2, Klf4, and cMyc and cultured the resulting cells for 25 days either in the presence or 

absence of DAPT. We found that the addition of 10 µM DAPT led to a significant, 4-fold 

increase in the number of resulting Oct4::GFP+ mouse and NANOG+/TRA-1-81+ 

human iPSC colonies (Fig. 1b).  

We wondered whether this increase in reprogramming activity might allow the 

generation of iPSCs from keratinocytes without Klf4 and cMyc. Indeed, although 

transduction of Oct4 and Sox2 alone were not sufficient to induce keratinocyte 

reprogramming, Oct4 and Sox2 combined with DAPT treatment routinely yielded mouse 



and human iPSC colonies (Figs. 1c,d and Supplementary Fig. 2a). This effect was 

specific to Oct4 and Sox2-transduced cells because other 2-factor combinations did not 

yield iPSCs in the presence of DAPT (Fig. 1c).   

To determine whether these putative iPS cell lines were pluripotent, we subjected 

them to a “scorecard” assay for pluripotency that we recently developed 34. We found that 

these cell lines were indeed composed of pluripotent cells and that they performed 

comparably to human embryonic stem cells (ESCs) in their expression of pluripotency-

associated genes and differentiation propensities (Supplementary Figs 2b, c). To further 

confirm their differentiation capacity, we also injected the OCT4, SOX2 + DAPT human 

cells into immunocompromised mice and found that they readily formed teratomas 

containing differentiated cells (Fig. 1e). Moreover, when injected into blastocysts, the 

Oct4, Sox2 + DAPT mouse cells contributed to the development of chimeric mice 

(Supplementary Fig. 2d), including the germ-line (Supplementary Fig. 2e). 

Many applications of iPS cells would require the DAPT-dependent generation of 

KLF4 and CMYC-free iPSCs from adult keratinocytes. Therefore, we determined if 

DAPT treatment increased the reprogramming potential of adult human keratinocytes. As 

with mouse and human neonatal keratinocytes, we found that DAPT treatment of KLF4, 

SOX2, OCT4, and CMYC-transduced adult human keratinocytes significantly improved 

their rate of reprogramming (Supplementary Fig. 2f) and also enabled the generation of 

iPSCs with just OCT4 and SOX2 (Fig. 1f, Supplementary Fig. 2g). The scorecard assay 

again verified that these 2-factor iPSCs were pluripotent (Supplementary Figs 2b, c). 

Together, these results demonstrate that DAPT reliably enables the generation of bona 

fide mouse and human iPSCs from keratinocytes without KLF4 and CMYC. 



Notch inhibition promotes reprogramming 

Our results thus far suggest that antagonizing Notch signaling in keratinocytes 

may promote their conversion into iPSCs. To begin verifying that NOTCH was indeed 

the functional target of DAPT during reprogramming, we tested a structurally distinct γ-

secretase inhibitor, DBZ 35(Fig. 2a), for activity in iPSC generation. When we treated 

human keratinocytes with DBZ, we observed significant reductions in the levels of the 

intracellular domain of the NOTCH receptor (Supplementary Fig.1a) and the NOTCH-

dependent genes HES1 and HES5 (Supplementary Fig. 3a), indicating that DBZ 

administration inhibited NOTCH signaling. Consistent with the notion that NOTCH 

inhibition increases the rate of reprogramming, DBZ significantly stimulated the 

formation of human iPSC colonies (Fig. 2b).  

Both DBZ and DAPT could have effects on the processing of unidentified γ-

secretase substrates that are distinct from NOTCH, which might also impact 

reprogramming efficiency. If the beneficial effects of DAPT on reprogramming were 

being mediated through the specific inhibition of NOTCH signaling rather than through 

some other target of γ-secretase, then we reasoned that constitutive activation of NOTCH 

signaling should eliminate the beneficial effect of DAPT. Consistent with this notion, we 

found that overexpression of the NOTCH intracellular domain (Supplementary Fig. 3b) 

stimulated the expression of NOTCH-target genes (Supplementary Fig. 3c) and 

completely blocked the positive effects of DAPT on reprogramming (Fig. 2c). 

Conversely, we reasoned that antagonizing the transcriptional activity of NOTCH should 

increase the rate of keratinocyte reprogramming. Indeed, when we suppressed NOTCH 

activity by overexpressing a dominant-negative form of MAML1 (Fig. 2d), a 



transcriptional co-activator for NOTCH 36,37, we observed an increase in iPSC generation 

from keratinocytes transduced with all 4 reprogramming factors (Fig. 2e). Therefore, we 

conclude that the inhibition of NOTCH signaling promotes the reprogramming of both 

human and mouse keratinocytes. 

In order to understand how Notch inhibition promotes iPSC generation, we first 

determined when in the reprogramming process it was required. We treated mouse 

keratinocytes with DAPT either before or both before and after transduction with 

reprogramming factors. While treatment both before and after transduction yielded a 4-

fold increase in iPSC generation, we found that pre-treatment alone resulted in a 

significant 2.5-fold enhancement in reprogramming efficiency (Supplementary Fig. 4a). 

To more precisely pinpoint the effective post-transduction treatment window, we 

transduced human keratinocytes with KLF4, OCT4, SOX2, and CMYC and administered 

DAPT or DBZ from days 1-6, 6-11, 11-16, or 1-16 after viral infection (Figs 3a-c). 

Chemical inhibition of NOTCH signaling was most effective during early time points, 

significantly increasing iPSC generation when used from days 1-6 and 6-11 (Figs 3b, c). 

In contrast, a later treatment from days 11-16 had little effect on reprogramming (Figs 3b, 

c). Together, these results indicate that Notch inhibition can act on the starting 

keratinocytes and at early time points just after the initiation of transcription factor 

overexpression to enhance reprogramming. 

 

Notch inhibition acts by suppressing p21 expression 

One way that Notch inhibition could promote iPSC formation is by activating the 

expression of the reprogramming transcription factors from their endogenous loci. 



However, when we treated human keratinocytes with DAPT and analyzed their gene 

expression, we found that levels of KLF4, OCT4, and CMYC actually decreased and 

SOX2 did not significantly change (Supplementary Fig. 4b). 

In the mammalian epidermis, Notch signaling functions as a switch that directly 

activates p21 transcription, which in turn forces keratinocytes to exit the cell cycle and 

begin differentiating 38. To determine if chemical inhibition of Notch signaling in 

keratinocytes might be enhancing their reprogramming potential by suppressing p21, we 

measured p21 levels in human keratinocytes in the presence and absence of DAPT. 

Consistent with previous reports 38, we found that Notch inhibition decreased the levels 

of p21 mRNA and protein in these cells (Supplementary Fig. 4c, Fig. 3d). In addition, 

DAPT treatment slightly decreased the level of FLAG-tagged p21 protein expressed by 

an exogenous retrovirus, indicating that Notch may also regulate p21 post-

transcriptionally (Supplementary Figs. 4d, e). Consistent with these observations, Notch 

inhibition suppressed expression of INVOLUCRIN, which is expressed in more 

differentiated keratinocytes (Fig. 3e).  

To verify that Notch inhibition promotes iPSC reprogramming by suppressing 

p21, we performed 2-factor (Oct4 and Sox2) and 4-factor reprogramming in keratinocytes 

with p21 siRNA/shRNA in the presence or absence of DAPT. Mouse keratinocytes 

transduced with Klf4, Sox2, Oct4, and cMyc showed a similar increase in iPSC generation 

when treated with either 2.5 µm DAPT or p21 siRNA (Supplementary Fig. 4f). The 

efficiency of reprogramming with these two methods was not significantly different 

(Supplementary Fig. 4f), and treating with DAPT in the presence of the p21 siRNA did 

not produce a significant increase in iPSC formation (Supplementary Fig. 4f). Similarly, 



suppression of p21 by shRNA (Supplementary Figs 4g, h) enabled the generation of 

iPSCs from human keratinocytes transduced with 2 or 4 factors at rates equivalent to 

DAPT treatment (Figs 3f, g). Again, supplementing p21 knockdown with DAPT 

treatment did not result in a significant increase in iPSC formation (Figs 3f, g). These 

results indicate that p21 suppression and DAPT have similar effects on iPSC generation 

from keratinocytes and that DAPT does not provide an additional advantage over p21 

suppression alone. 

If Notch inhibition and p21 suppression indeed blocks keratinocyte differentiation, 

the p21-treated keratinocytes would be predicted to display an increase in their long-term 

proliferative capacity 39. The ability to form large colonies on collagen demonstrates the 

ability of keratinocytes to self-renew extensively and is a functional property unique to 

undifferentiated cells of this lineage 39. In contrast, differentiated keratinocytes senesce 

after only a few rounds of division and do not form colonies 39. DAPT treatment of 

human keratinocytes for 6 days significantly increased the number of cells capable of 

forming large colonies when cultured for an additional 14 days in the absence of the 

chemical (Supplementary Fig. 4i). The resulting 4-fold increase in colony formation rate 

was similar in magnitude to the elevation in iPSC generation with DAPT treatment (Fig. 

1b). To determine if this increased self-renewal capacity was indeed promoting 

reprogramming, we transduced keratinocytes with p21 to limit their replication and 

attempted to reprogram them either with or without DAPT. The forced p21 expression 

severely impaired the self-renewal potential of the keratinocytes (Supplementary Fig. 4j) 

and inhibited iPSC formation after transduction with the 4 reprogramming factors and 

treatment with DAPT (Fig. 3h).  



Because Notch inhibition does not promote fibroblast replication 40, if this is the 

mechanism by which DAPT improves reprogramming, we would not expect chemical 

treatment to affect mouse embryonic fibroblast 41 reprogramming 41. Indeed, DAPT 

treatment of MEFs transduced with all 4 reprogramming factors did not affect the rate of 

iPSC generation (Supplementary Fig. 4k). Together, these results demonstrate that Notch 

inhibition promotes iPSC generation from keratinocytes by repressing their 

differentiation and enhancing their long-term replicative potential through p21 

suppression.  

 

Efficient reprogramming with Notch and DOT1L inhibition 

Knowing that Notch inhibition enhances iPSC generation through this unique 

mechanism, we next wanted to compare its activity to previously described 

reprogramming molecules that act through other mechanisms 17,42-44 and identify any that 

DAPT might synergize with. When we transduced human neonatal keratinocytes with 

KLF4, SOX2, OCT4, and CMYC and treated them with various combinations of 

compounds shown to enhance reprogramming in other reports, including an activator of 

3’-phosphoinositide-dependent kinase-1 (PDK1)17, inhibitors of TGF-β, MEK, and 

GSK3β signaling 17, histone deacetylase inhibitors 17,42, histone methyltransferase 

inhibitors 17,44, and a DNA methyltransferase inhibitor 43, we found that DAPT treatment 

was the most potent at enhancing reprogramming (Fig. 4a). This remained true when we 

attempted reprogramming with only OCT4 and SOX2 (Fig. 4b).  

However, an inhibitor of the histone methyltransferase DOT1L (iDOT1L) 

synergized OCT4, SOX2 and DAPT to elevate the rate of iPSC generation by 10-fold 



over the rate with OCT4, SOX2 and DAPT alone, making it even more efficient than 4-

factor reprogramming either with or without DAPT (Fig. 4b). The OCT4 + SOX2 + 

DAPT + iDOT1L colonies could be readily expanded and maintained NANOG and TRA-

1-81 expression (Fig. 4c). These data indicate that Notch inhibition is a potent enhancer 

of reprogramming in keratinocytes that can synergize with chromatin-modifying 

compounds to induce pluripotency at a high efficiency with only OCT4 and SOX2. 

 

Notch inhibition does not compromise p53 activity 

Previous studies of p53 and p21 in reprogramming have suggested that ectopic 

overexpression of reprogramming transcription factors can activate p53, which then 

induces either apoptosis or the expression of p21, thus inhibiting reprogramming 3,6. 

Because suppression of the p53 pathway greatly facilitates iPSC generation, this 

approach has become an important part of reprogramming methods that reduce or 

eliminate integrating exogenous transcription factors 3,4. However, because p53 inhibition 

allows the accumulation of genetic mutations during reprogramming 8, alternative 

approaches for increasing reprogramming efficiencies would be desirable. We therefore 

next asked whether Notch inhibition promotes reprogramming through a p53-dependent 

or independent pathway by analyzing the effects of DAPT and DBZ treatment on p53 and 

its target genes. First, we confirmed the finding that transduction with the iPSC 

reprogramming factors stimulated p53 activity (Fig. 5a). Chemical inhibition of Notch 

signaling in both human and mouse keratinocytes did not reduce the expression of p53 at 

the protein or mRNA level either before or after transduction with the reprogramming 

factors (Figs 5b,c and Supplementary Figs 5a, b). Moreover, transcriptional analysis of 



DAPT-treated human and mouse keratinocytes revealed that the mRNA levels of the p53 

target genes Dr5, Puma, and Fas were not decreased (Fig. 5c and Supplementary Figs 5a, 

b), supporting the notion that p53 activity was not suppressed by Notch inhibition.  

To further confirm that DAPT treatment did not suppress p53 activity, we 

performed reprogramming experiments with and without DAPT after UV irradiation. UV 

exposure causes DNA damage, which in turn reduces reprogramming efficiencies by 

inducing p53-dependent apoptosis 8. However, p53-deficient cells are resistant to the 

negative effects of UV irradiation on reprogramming 8. Therefore, if p53 activity was 

maintained in DAPT-treated cultures, then we would expect a sharp decrease in 

reprogramming efficiency after UV irradiation. As a control for p53-deficiency, we 

performed 4-factor reprogramming with or without UV irradiation using keratinocytes in 

which we overexpressed a dominant-negative form of p53 (p53DD) 3 that suppressed p53 

activity as evidenced by a decrease in the expression levels of p53-dependent target genes 

(Supplementary Fig. 5c). As expected, UV exposure did not impact the rate of iPSC 

generation when p53DD was expressed, functionally demonstrating that p53 activity was 

indeed impaired (Fig. 5d). In contrast, in the absence of p53DD overexpression, UV 

exposure sharply reduced the number of iPSCs generated in DMSO-treated cultures (Fig. 

5d). Similarly, UV irradiation severely diminished the number of iPSC colonies in 

DAPT-treated cultures again suggesting that Notch inhibition does not suppress p53 

activity during reprogramming (Fig. 5d).  

Although the difference in reprogramming efficiency in p53-deficient versus 

DAPT-treated keratinocytes was clearly evident when UV irradiation was used to induce 

DNA damage, we next determined whether DNA damage was measurably influenced by 



DAPT treatment under normal reprogramming conditions. To test this, we quantified 

phosphorylated histone H2AX (γH2AX) expression in 4-factor-transduced human 

keratinocytes treated with DAPT, p53DD, or p53 shRNA. Histone H2AX becomes 

phosphorylated in response to double strand DNA breaks, making it a reliable marker of 

DNA damage 8. Pan-nuclear γH2AX expression results from replication-induced damage 

and could indicate insults sustained during reprogramming 8. We found that 10 days after 

transduction, pan-nuclear γH2AX staining was significantly elevated in cultures treated 

with p53DD or p53 shRNA, which is consistent with a previous study in which elevated 

rates of DNA damage were observed in p53-deficient cells during reprogramming and in 

the resulting iPSCs 8 (Fig. 5e and Supplementary Figs 5d-f). The DAPT-treated cells, 

however, maintained low cell numbers with pan-nuclear γH2AX expression that were 

similar to the control cultures (Fig. 5e and Supplementary Fig. 5f). These results suggest 

that, in contrast to p53-deficiency, DAPT treatment did not promote the survival and 

reprogramming of cells with DNA damage.  

To confirm that Notch inhibition does not prevent the apoptosis of compromised 

cells during reprogramming, we measured the fraction of TUNEL-positive nuclei in 

DAPT-treated cultures. Despite high rates of DNA damage in the p53-deficient 

reprogramming cultures, the percentage of TUNEL-positive nuclei was greatly reduced 

compared to a wild-type control, indicating that inactivation of p53 permitted the survival 

of cells with compromised genomes (Fig. 5f). In contrast, the percentage of TUNEL-

positive cells was not significantly reduced by DAPT treatment (Fig. 5f).  

In order to determine if DAPT enabled the efficient generation of iPSCs that 

displayed improved genomic integrity relative to their counterparts made through p53 



suppression, we measured the copy number variation in iPSC lines made with DAPT or 

p53DD. Consistent with the γH2AX and TUNEL staining results, we found that iPSC 

lines derived in the presence of p53DD possessed an average of 4 indels/line, while 

iPSCs derived with a control GFP vector or 10 µm DAPT contained only 1 or .5 

indels/line, respectively (Fig. 5g and Supplementary Fig. 6). Together, these experiments 

show that DNA damage is present during normal reprogramming conditions and that 

inhibition of p53 allows cells with damaged genomic material to persist. In contrast, 

Notch inhibition enhances reprogramming without compromising genomic integrity or 

promoting the survival of iPSCs that have undergone DNA damage. 

 

Discussion 

In summary, our findings suggest that signaling through the Notch pathway is a 

significant impediment to the early stages of the reprogramming of both mouse and 

human keratinocytes into iPSCs (Figure 6). Importantly, the mechanism by which Notch 

signaling likely inhibits reprogramming of mouse and human cells is by activating p21 

independently of p53. Consistent with this hypothesis, treatment of reprogramming 

cultures with the γ-secretase inhibitors DAPT and DBZ reduced the levels of intracellular 

Notch and increased colony forming potential, leading to an increase in the rate of iPSC 

formation. Suppression of p21 expression by siRNA/shRNA was sufficient to replace 

Notch inhibition in reprogramming, and exogenous p21 blocked the beneficial effects of 

DAPT. Importantly, the resulting improvement in reprogramming activity did not come 

at the expense of a reduction in p53 activity or increased genomic instability (Figure 6).  



Our findings have immediate and practical ramifications for the improved 

production of patient-specific human iPSCs. When taken together, our studies show that 

through pharmacological inhibition of NOTCH, it is routinely possible to produce human 

iPSCs with only OCT4 and SOX2, rendering CMYC and KLF4 dispensable and thereby 

reducing the oncogenic potential of the resulting cells. Furthermore, our findings enabled 

CMYC and KLF4-free iPSC production without inhibition of p53 or its target genes 

involved in apoptosis, allowing pro-apoptotic pathways that ensure genomic integrity to 

be engaged 8,10,11. Thus, in this approach, the production of oncogene-free iPSC lines 

does not come at the expense of an increase in mutational load 8,10,11,45.   

Studies using nuclear transplantation and defined transcription factors have shown 

that nuclei become less amenable to reprogramming as they advance developmentally 24-

26. Our study demonstrates that intercellular communication in somatic cultures can cause 

them to differentiate and lose their reprogramming potential, but that with small molecule 

treatment, it is possible to force them to remain in an undifferentiated, highly 

reprogrammable state. This approach synergized potently with chemical inactivation of 

the histone H3 methyltransferase DOT1L, allowing two-factor reprogramming at higher 

efficiency than with four transcription factors. This indicates that while histone 

methyltransferase inhibition had almost no effect on the reprogramming of differentiated 

keratinocytes, it had a profound ability to enhance the reprogramming of undifferentiated 

keratinocytes. Thus, somatic cells at different developmental stages respond differentially 

to chromatin-modifying signals during reprogramming. The combined chemical 

inhibition of NOTCH and DOT1L provides a new approach for boosting the 



reprogramming potential of keratinocytes and is an attractive starting point for the 

identification of a small molecule reprogramming cocktail for human cells.  
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Figure 1. DAPT treatment promotes mouse and human keratinocyte 
reprogramming.  a, Chemical structure of DAPT. b, The efficiency of iPSC generation 
from mouse and human keratinocytes transduced with Oct4, Sox2, Klf4, and cMyc with 
DMSO or DAPT treatment (DAPT used at 10 µM in mouse experiment).  c, The 
efficiency of iPSC generation from mouse and human keratinocytes transduced with all 
combinations of 2 reprogramming factors with DMSO or 2.5 µM DAPT treatment from 
days 1-18 post-transduction.  d, A P0 mouse and human iPSC colony generated using 
OCT4, SOX2, and DAPT, scale bars = 100 μm. g, Teratoma generated by iPSCs derived 
from human neonatal kerationcytes using OCT4, SOX2, and DAPT, scale bar = 50 µm. j, 
NANOG+/TRA-1-81+ iPSC line generated from human adult keratinocytes using OCT4, 
SOX2 + DAPT, scale bars = 100 μm. For all experiments, error bars represent the 
standard deviation between two or three biological replicates and statistical significance 
was determined using a two-tailed homoscedastic Student’s t-test. 
 
Figure 2. γ-secretase inhibition promotes reprogramming by blocking Notch 
signaling. a, Chemical structure of DBZ. b, The efficiency of NANOG+/TRA-1-81+ 
iPSC generation from human neonatal keratinocytes transduced with OCT4, KLF4, SOX2, 
and CMYC and treated with different concentrations of DBZ from days 1-18 post-
transduction. c, The efficiency of NANOG+/ TRA-1-81+ iPSC generation from human 
neonatal keratinocytes transduced with OCT, SOX2, KLF4, and CMYC and GFP or 
NOTCH ICD and treated with DMSO or 10 µM DAPT from days 1-18 post-transduction. 
Cells were transduced with NOTCH ICD or GFP lentivirus 1 day after transduction with 
the reprogramming factors.  d, qPCR analysis of expression levels of NOTCH-dependent 
gene HES1 in human neonatal keratinocytes transduced with dominant-negative 
MASTERMIND-LIKE-1 (dnMAML) or RFP.  e, The efficiency of NANOG+/TRA-1-
81+ iPSC generation from human neonatal keratinocytes transduced with OCT, SOX2, 
KLF4, and CMYC and RFP or dnMAML and treated with DMSO or 10 µM DAPT from 
days 1-18 post-transduction. For all experiments, error bars represent the standard 
deviation between two or three biological replicates and statistical significance was 
determined using a two-tailed homoscedastic Student’s t-test. 
 
Figure 3. Notch inhibition promotes keratinocyte reprogramming by suppressing 
p21.  a, Schematic of the DAPT treatment time course on human neonatal keratinocytes.  
b, Efficiency of NANOG+/TRA-1-81+ iPSC generation from human neonatal 
keratinocytes transduced with OCT4, SOX2, KLF4, and CMYC and treated with intervals 
of 10 µM DAPT or  c, 2 µM DBZ. d, Western blot for p21 in human neonatal 
keratinocytes transduced with OCT4 and SOX2 and treated with DMSO or 10 µM DAPT. 
Full blot shown in Supplementary Figure 7c. e, Western blot for INVOLUCRIN in 
human neonatal keratinocytes treated with DMSO, 10 µM DAPT, or 1.2 mM calcium 
chloride for 6 days. Calcium was used as a positive control to induce keratinocyte 
differentiation. Full blot shown in Supplementary Figure 7d. f, Efficiency of 
NANOG+/TRA-1-81+ iPSC generation from human neonatal keratinocytes transduced 
with OCT4, KLF4, SOX2, and CMYC and a scrambled shRNA or a p21 shRNA at day 0 
of reprogramming. DAPT was added at 10 µM.  g, Efficiency of NANOG+/TRA-1-81+ 
iPSC generation from human neonatal keratinocytes transduced with OCT4 and SOX2 
and a scrambled shRNA control or a p21 shRNA at day 0 of reprogramming. DAPT was 



added at 2.5 µM. h, Efficiency of NANOG+/TRA-1-81+ iPSC generation from human 
neonatal keratinocytes transduced with OCT, SOX2, KLF4, and CMYC and GFP or p21 
and treated with DMSO or 10 µM DAPT from days 1-18 post-transduction. For all 
experiments, error bars represent the standard deviation between two-three biological 
replicates and statistical significance was determined using a two-tailed homoscedastic 
Student’s t-test. 
 
Figure 4. Highly efficient reprogramming with NOTCH and DOT1L inhibition. 
a, Comparison of NANOG+/TRA-1-81+ iPSC generation from OCT4, SOX2, KLF4,  
and CMYC-transduced human neonatal keratinocytes using 10 µM DAPT versus  
other published reprogramming chemicals. “A83” =  A8301 (.5 µM), “PD” =  
PD0325901 (.5 µM), “All from ref (13)” = A8301 (.5 µM), PD0325901 (.5 µM), PS48 (5 
µM), sodium butyrate (.25 mM), Parnate (2 µM), CHIR99021 (3 µM), “AZA” = 5-aza-
cytidine (.5 µM), “VPA” = valproic acid (.5 mM), “iDOT1L” = EPZ004777 (3 µM).  b,  
Comparison of NANOG+/TRA-1-81+ iPSC generation from OCT4- and SOX2- 
transduced human neonatal keratinocytes using 2.5 µM DAPT versus other  
published reprogramming chemicals.  c, iPSC line generated from human neonatal  
keratinocytes using OCT4, SOX2, DAPT, and iDOT1L. scale bars = 100 µm.  For all  
experiments, error bars represent the standard deviation between two-three biological  
replicates and statistical significance was determined using a two-tailed homoscedastic  
Student’s t-test. 
 
Figure 5. NOTCH inhibition suppresses p21 without reducing p53 activity.  a, qPCR 
analysis of p53-dependent genes in human neonatal keratinocytes 3 days after 
transduction of GFP or OCT4 and SOX2.  b, Western blot of p53 levels in human 
neonatal keratinocytes with DMSO or 10 µM DAPT treatment for 3 days. Full blot 
shown in Supplementary Figure 7g. c, qPCR analysis of p53-dependent genes after 10 
µM DAPT or 2 µM DBZ treatment for 3 days in OCT4, SOX2-transduced human 
keratinocytes. d, The efficiency of NANOG+/TRA-1-81+ iPSC generation in OCT4, 
SOX2, KLF4, and CMYC-transduced human neonatal keratinocytes transduced with 
p53DD or GFP with or without exposure to UV irradiation.  e, γH2AX immunostaining 
in human neonatal keratinocytes 10 days after transduction with OCT4, SOX2, KLF4, and 
CMYC and treatment with DAPT, p53DD, or p53 shRNA. Scale bars = 50 μm. f, The 
percentage of TUNEL-positive cells in human neonatal keratinocyte reprogramming 
cultures with active or inactive p53 (p53DD expression) 10 days after transduction with 
OCT4, SOX2, KLF4, and CMYC.  g, The number of insertions or deletions (indels) per 
iPSC line derived under normal, DAPT, or p53DD conditions, as determined by array 
CGH.  For all experiments, error bars represent the standard deviation between two 
biological replicates and statistical significance was determined using a two-tailed 
homoscedastic Student’s t-test. * denotes significance p-value < .05.  
 
Figure 6. Model of iPSC generation from human keratinocytes. Notch inhibition 
allows the production of safer oncogene-free iPSCs by suppressing p21 in a p53-
independent manner.  
 



Online Methods  

iPSC reprogramming experiments 

The IACUC committee of Harvard University approved the use of mice for all 

experiments included in this paper. Oct4:GFP neonatal mouse keratinocytes were isolated 

from P1-P2 pups using an overnight digestion in either .25% trypsin/EDTA or TrypLE 

(Life Technologies) at 4 degrees Celsius. They were cultured in SFM medium (Life 

Technologies) on collagen IV-coated plates. Neonatal human epidermal keratinocytes 

(Lonza) were cultured in Epilife medium (Invitrogen) on collagen-coated plates. 

Keratinocytes were reprogrammed using retroviruses containing either mouse or human 

OCT4, SOX2, KLF4, and CMYC produced in the pMXs backbone. Chemical treatment 

was initiated 1-2 days after viral transduction and re-administered every other day until 

the end of the experiment unless otherwise specified. DAPT (EMD Millipore) was used 

at 10 µM for reprogramming experiments using OCT4, SOX2, KLF4, and CMYC and 2.5 

µM for OCT4, SOX2 reprogramming experiments unless otherwise noted.  DBZ was 

used at 2 µM. Irradiated mouse embryonic fibroblast feeders were added 6 days after 

transduction and the media was changed to mouse or human embryonic stem cell 

medium at that time. Colonies were scored as iPSC colonies if they were Oct4::GFP+ in 

mouse experiments or NANOG+/TRA-1-81+ in human experiments. 

 

Gene expression analysis of iPSCs 

Nanostring (Nanostring Technologies) and scorecard analysis was performed as 

described 34. iPSCs were cultured in mTesr1 medium (Stem Cell Technologies) prior to 

RNA isolation. To measure their differentiation propensities, iPSCs were dissociated into 



embryoid bodies and cultured in human embryonic stem cell medium without bFGF for 

16 days. Cells were then lysed and total RNA was extracted using Trizol (Life 

Technologies) and purified using the RNeasy kit (QIAGEN). 300 ng to 500 ng of RNA 

was profiled on the Nano-String nCounter system (Nanostring Technologies) according 

to manufacturer’s instructions. A custom nCounter codeset covering 500 genes that 

monitor cell state, pluripotency, and differentiation was used 34. Data analysis was 

performed with the R statistics package as in 34. Briefly, the lineage scorecard performs a 

parametric gene set enrichment analysis on t scores obtained from a pairwise comparison 

between the cell line of interest and the reference of ES cell-derived EBs. 

 

Differentiation of iPSCs 

For teratoma formation, 1-2 million human iPSCs were injected into the kidney capsule 

of nude mice and harvested 2 months later. Teratomas were sectioned and stained with 

hematoxylin and eosin for visualization. For the mouse iPSC chimera assay, 10 

Oct4::GFP+ iPSCs were injected per ICR blastocyst, and 20 blastocysts were 

transplanted into each pseudopregnant female. Embryos were either allowed to develop 

to term or harvested at day E12.5 and dissected for genital ridge analysis using a 

stereomicroscope. 

 

Gene expression analysis of reprogramming cultures 

Illumina MouseRef-8 microarrays (Illumina) were used for genome-wide mRNA 

expression analysis of reprogramming mouse keratinocyte cultures treated with DMSO or 

10 µM DAPT. For QPCR analysis, RNA was isolated using Trizol, cDNA synthesis was 



performed using the iScript cDNA synthesis kit (Bio-rad), and the SYBR Green qPCR 

Supermix (Bio-rad) was used for PCR product detection.  

 

Western blots and immunofluorescence 

Antibodies detecting mouse Notch (Santa Cruz Biotechnology, sc-6015), human NOTCH 

(Abcam, ab27526, and Santa Cruz Biotechnology, sc-23307), cleaved human NOTCH 

(Cell Signaling Technology, 2421), p53 (Santa Cruz Biotechnology, sc-56182), 

Involucrin (Abcam, Ab53112), and p21 (Cell Signaling Technology 05-345) were used 

for western blots. Blots were quantified using ImageJ software. Antibodies specific for 

NANOG (Abcam, AF1997) and TRA-1-81 (Chemicon, MAB4381) were used to identify 

human iPSCs. A γH2AX (Abcam, ab11175) antibody was used to detect γH2AX foci. 

Cells in which γH2AX staining covered greater than half the nucleus were scored as 

positive for γH2AX foci. 

 

UV irradiation assay 

UV irradiation was performed at a dosage of 30 J. TUNEL staining was performed using 

a TUNEL kit (Pharmacia Biosciences).  

 

shRNA/siRNA knockdown experiments 

shRNAs and siRNAs were purchased from Sigma and added to reprogramming cultures 

within 1 day after addition of the reprogramming retroviruses. shRNAs 

(TRCN0000003753, p53 and TRCN0000287021, p21) were expressed in the pLKO.1 



lentiviral backbone. siRNAs were used at 80nM and were transfected into 

reprogramming cultures using RNAiMAX (Life Technologies).  

 

Array CGH analysis of iPSC lines 

Cell Line Genetics performed array CGH analysis of iPSC lines at passage 5 using 

4x180K+SNP analysis. 

 

Statistical analysis 

For all experiments, error bars represent the standard deviation between two-three 

biological replicates and statistical significance was determined using a two-tailed 

homoscedastic Student’s t-test. 

 

Accession numbers 

Microarray data have been submitted to the GEO repository with accession number 

GSE35090. 
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Supplementary figure 2. DAPT treatment promotes mouse and human keratinocyte 
reprogramming. a, PCR genotyping of transgenic insertions in genomic DNA from 
DAPT iPSCs. b, Hierarchical clustering of mRNA expression profiles of pluripotent stem 
cell lines. “hES” = ESCs, “hiPS” = fibroblast-derived iPSCs, “nkiPSOSK50” = 
keratinocyte-derived iPSC lines induced with OCT4, SOX2, and KLF4, “hFib” = primary 
fibroblast lines, “hMN” = hESC-derived motor neurons, “nkiPS OSDAPT58” = human 
iPSC line generated from neonatal keratinocytes with OCT4, SOX2, and DAPT, “nkiPS 
OSDAPT58s2” = a subclone from passage 2 of nkiPS OSDAPT58, “akiPS OSDAPT2” 
and “akiPSOSDAPT9” = two independent iPSC lines derived from adult keratinocytes 
using OCT4, SOX2, and DAPT. c, Lineage scorecard analysis of embryoid bodies 
differentiated for 16 days, showing the propensities with which the DAPT-iPSCs 
differentiate into endodermal, mesodermal, and ectodermal lineages. d, Chimeric mouse 
generated from C57Bl/6 OCT4, SOX2 + DAPT mouse iPSCs injected into ICR (albino) 
blastocysts. e, The E13.5 genital ridge of an embryo derived from non-transgenic 
blastocysts injected with OCT4, SOX2 + DAPT mouse iPSCs derived from Oct4::GFP 
keratinocytes. Scale bars = 400 μm. f, Efficiency of iPSC generation from human adult 
keratinocytes transduced with OCT4, KLF4, SOX2, and CMYC, treated with or without 
10 µM DAPT.  g, Efficiency of iPSC generation from human adult keratinocytes 
transduced with OCT4 and SOX2, treated with or without 2.5 µM DAPT. For all 
experiments, error bars represent the standard deviation between two or three biological 
replicates and statistical significance was determined using a two-tailed homoscedastic 
Student’s t-test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 



 
 
Supplementary figure 4. Notch inhibition promotes keratinocyte reprogramming by 
suppressing p21. a, Reprogramming efficiency over a time course of 10 µM DAPT 
treatment in mouse keratinocytes transduced with OCT4, SOX2, KLF4, and CMYC. “pre-
DAPT” = treatment from 6 days before transduction-1 day before transduction, “long 
DAPT” = treatment from 6 days before transduction-18 days post-transduction. b, qPCR 
analysis of endogenous pluripotency genes in human keratinocytes treated with DMSO or 
10 µM DAPT. c, qPCR analysis of p21 expression in human neonatal keratinocytes 
transduced with OCT4, SOX2 and treated with DMSO or 10 µM DAPT. d, Western blot 
using a p21-specific antibody detecting endogenous p21 and the p21-FLAG-tagged 
protein. Full blot in Supplementary Figure 7e. e, Quantification of p21 western blot. f, 
Reprogramming efficiency of mouse keratinocytes transduced with OCT4, KLF4, SOX2, 
and CMYC and treated with 80 nM scrambled or p21 siRNA at day 0. g, p21 western blot 
in human neonatal keratinocytes transduced with the reprogramming factors and a 
scrambled or p21 shRNA. Full blot in Supplementary Figure 7f. h, Quantification of p21 
western blot. i, Colony forming assay on human neonatal keratinocytes. Colonies >35 
cells were scored positive. j, Colony forming assay using human neonatal keratinocytes 
transduced with GFP or p21. k, Reprogramming efficiency of MEFs transduced with 
OCT4, SOX2, KLF4, and CMYC and treated with DMSO or 10 µM DAPT. For all 
experiments, error bars represent the standard deviation between two or three biological 
replicates and statistical significance was determined using a two-tailed homoscedastic 
Student’s t-test.  
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