843 research outputs found
Quantum Bit String Commitment
A bit string commitment protocol securely commits classical bits in such
a way that the recipient can extract only bits of information about the
string. Classical reasoning might suggest that bit string commitment implies
bit commitment and hence, given the Mayers-Lo-Chau theorem, that
non-relativistic quantum bit string commitment is impossible. Not so: there
exist non-relativistic quantum bit string commitment protocols, with security
parameters and , that allow to commit
bits to so that 's probability of successfully cheating when revealing
any bit and 's probability of extracting more than bits of
information about the bit string before revelation are both less than
. With a slightly weakened but still restrictive definition of
security against , can be taken to be for a positive
constant . I briefly discuss possible applications.Comment: Published version. (Refs updated.
Multidrug-resistant Bacteroides fragilis group on the rise in Europe?
We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before. Š 2012
An Improved Interactive Streaming Algorithm for the Distinct Elements Problem
The exact computation of the number of distinct elements (frequency moment
) is a fundamental problem in the study of data streaming algorithms. We
denote the length of the stream by where each symbol is drawn from a
universe of size . While it is well known that the moments can
be approximated by efficient streaming algorithms, it is easy to see that exact
computation of requires space . In previous work, Cormode
et al. therefore considered a model where the data stream is also processed by
a powerful helper, who provides an interactive proof of the result. They gave
such protocols with a polylogarithmic number of rounds of communication between
helper and verifier for all functions in NC. This number of rounds
can quickly make such
protocols impractical.
Cormode et al. also gave a protocol with rounds for the exact
computation of where the space complexity is but the total communication . They managed to give round protocols with
complexity for many other interesting problems
including , Inner product, and Range-sum, but computing exactly with
polylogarithmic space and communication and rounds remained open.
In this work, we give a streaming interactive protocol with rounds
for exact computation of using bits of space and the communication is . The update
time of the verifier per symbol received is .Comment: Submitted to ICALP 201
Bootstrapping Conditional GANs for Video Game Level Generation
Generative Adversarial Networks (GANs) have shown im-pressive results for
image generation. However, GANs facechallenges in generating contents with
certain types of con-straints, such as game levels. Specifically, it is
difficult togenerate levels that have aesthetic appeal and are playable atthe
same time. Additionally, because training data usually islimited, it is
challenging to generate unique levels with cur-rent GANs. In this paper, we
propose a new GAN architec-ture namedConditional Embedding Self-Attention
Genera-tive Adversarial Network(CESAGAN) and a new bootstrap-ping training
procedure. The CESAGAN is a modification ofthe self-attention GAN that
incorporates an embedding fea-ture vector input to condition the training of
the discriminatorand generator. This allows the network to model
non-localdependency between game objects, and to count objects. Ad-ditionally,
to reduce the number of levels necessary to trainthe GAN, we propose a
bootstrapping mechanism in whichplayable generated levels are added to the
training set. Theresults demonstrate that the new approach does not only
gen-erate a larger number of levels that are playable but also gen-erates fewer
duplicate levels compared to a standard GAN
MASCARA-2 b: A hot Jupiter transiting the A-star HD185603
In this paper we present MASCARA-2 b, a hot Jupiter transiting the
A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million
flux measurements of the star, corresponding to a total of almost 3000 hours of
observations, revealing a periodic dimming in the flux with a depth of .
Photometric follow-up observations were performed with the NITES and IAC80
telescopes and spectroscopic measurements were obtained with the Hertzsprung
SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of
at a distance of , has a radius of and place a
upper limit on the mass of . HD 185603 is a
rapidly rotating early-type star with an effective temperature of
and a mass and radius of
, , respectively. Contrary
to most other hot Jupiters transiting early-type stars, the projected planet
orbital axis and stellar spin axis are found to be aligned with . The brightness of the host star and the high equilibrium
temperature, , of MASCARA-2 b make it a suitable target for
atmospheric studies from the ground and space. Of particular interest is the
detection of TiO, which has recently been detected in the similarly hot planets
WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&
Investigation of factors influencing the immunogenicity of hCG as a potential cancer vaccine
Human hCG and its βâsubunit (hCGβ) are tumour autocrine growth factors whose presence in the serum of cancer patients has been linked to poorer prognosis. Previous studies have shown that vaccines, which target these molecules and/or the 37 amino acid Câterminal hCGβ peptide (hCGβCTP), induce antibody responses in a majority of human recipients. Here we explored whether the immunogenicity of vaccines containing an hCGβ mutant (hCGβR68E, designed to eliminate crossâreactivity with luteinizing hormone) or hCGβCTP could be enhanced by coupling the immunogen to different carriers (KLH or Hsp70) using different crossâlinkers (EDC or GAD) and formulated with different adjuvants (RIBI or Montanide ISA720).
While there was little to choose between KLH and Hsp70 as carriers, their influence on the effectiveness of a vaccine containing the BAChCGβR68E mutant was less marked, presumably because being a foreign species, this mutant protein itself might provide Tâhelper epitopes. The mutant provided a significantly better vaccine than the hCGβCTP peptide irrespective of the carrier used, how it was crossâlinked to the carrier or which adjuvant was used when hCG was the target. Nonetheless, for use in humans where hCG is a tolerated selfâprotein, the need for a carrier is of fundamental importance. Highest antibody titres were obtained by linking the BAChCGβR68E to Hsp70 as a carrier by GAD and using RIBI as the adjuvant, which also resulted in antibodies with significantly higher affinity than those elicited by hCGβCTP peptide vaccine. This makes this mutant vaccine a promising candidate for therapeutic studies in hCGβâpositive cancer patients
Quantum fingerprinting
Classical fingerprinting associates with each string a shorter string (its
fingerprint), such that, with high probability, any two distinct strings can be
distinguished by comparing their fingerprints alone. The fingerprints can be
exponentially smaller than the original strings if the parties preparing the
fingerprints share a random key, but not if they only have access to
uncorrelated random sources. In this paper we show that fingerprints consisting
of quantum information can be made exponentially smaller than the original
strings without any correlations or entanglement between the parties: we give a
scheme where the quantum fingerprints are exponentially shorter than the
original strings and we give a test that distinguishes any two unknown quantum
fingerprints with high probability. Our scheme implies an exponential
quantum/classical gap for the equality problem in the simultaneous message
passing model of communication complexity. We optimize several aspects of our
scheme.Comment: 8 pages, LaTeX, one figur
- âŚ