179 research outputs found

    Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application of the viral envelope protein VP28

    Get PDF
    It has been generally accepted that invertebrates such as shrimp do not have an adaptive immune response system comparable to that of vertebrates. However, in the last few years, several studies have suggested the existence of such a response in invertebrates. In one of these studies, the shrimp Penaeus monodon showed increased protection against white spot syndrome virus (WSSV) using a recombinant VP28 envelope protein of WSSV. In an effort to further investigate whether this increased protection is limited to P. monodon or can be extended to other penaeid shrimp, experiments were performed using the Pacific white shrimp Litopenaeus vannamei. As found with P. monodon, a significantly lower cumulative mortality for VP28-fed shrimp was found compared to the controls. These experiments demonstrate that there is potential to use oral application of specific proteins to protect the 2 most important cultured shrimp species, P. monodon and L. vannamei, against WSSV. Most likely, this increased protection is based on a shared and, therefore, general defence mechanism present in all shrimp species. This makes the design of intervention strategies against pathogens based on defined proteins a viable option for shrimp cultur

    White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp

    Get PDF
    AbstractWhite spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of entry and systemic infection of WSSV in the black tiger shrimp, Penaeus monodon, and the role of these proteins in these processes are not known. A specific polyclonal antibody was generated against the major envelope protein VP28 using a baculovirus expression vector system. The VP28 antiserum was able to neutralize WSSV infection of P. monodon in a concentration-dependent manner upon intramuscular injection. This result suggests that VP28 is located on the surface of the virus particle and is likely to play a key role in the initial steps of the systemic WSSV infection in shrimp

    In silico identification of putative promoter motifs of White Spot Syndrome Virus

    Get PDF
    BACKGROUND: White Spot Syndrome Virus, a member of the virus family Nimaviridae, is a large dsDNA virus infecting shrimp and other crustacean species. Although limited information is available on the mode of transcription, previous data suggest that WSSV gene expression occurs in a coordinated and cascaded fashion. To search in silico for conserved promoter motifs (i) the abundance of all 4 through 8 nucleotide motifs in the upstream sequences of WSSV genes relative to the complete genome was determined, and (ii) a MEME search was performed in the upstream sequences of either early or late WSSV genes, as assigned by microarray analysis. Both methods were validated by alignments of empirically determined 5' ends of various WSSV mRNAs. RESULTS: The collective information shows that the upstream region of early WSSV genes, containing a TATA box and an initiator, is similar to Drosophila RNA polymerase II core promoter sequences, suggesting utilization of the cellular transcription machinery for generating early transcripts. The alignment of the 5' ends of known well-established late genes, including all major structural protein genes, identified a degenerate motif (ATNAC) which could be involved in WSSV late transcription. For these genes, only one contained a functional TATA box. However, almost half of the WSSV late genes, as previously assigned by microarray analysis, did contain a TATA box in their upstream region. CONCLUSION: The data may suggest the presence of two separate classes of late WSSV genes, one exploiting the cellular RNA polymerase II system for mRNA synthesis and the other generating messengers by a new virus-induced transcription mechanism

    Sale Of Residence In Trust: Is The Exclusion Available?

    Get PDF
    With more use of trusts, particularly revocable inter vivos trusts, the question is being raised with increasing frequency as to whether sale of the residence by the trust is eligible for the 250,000exclusionfromincome(250,000 exclusion from income (500,000 for married taxpayers) on a joint return. The stakes are high and may influence whether a residence is placed in trust

    The white spot syndrome virus DNA genome sequence

    Get PDF
    AbstractWhite spot syndrome virus (WSSV) is at present a major scourge to worldwide shrimp cultivation. We have determined the entire sequence of the double-stranded, circular DNA genome of WSSV, which contains 292,967 nucleotides encompassing 184 major open reading frames (ORFs). Only 6% of the WSSV ORFs have putative homologues in databases, mainly representing genes encoding enzymes for nucleotide metabolism, DNA replication, and protein modification. The remaining ORFs are mostly unassigned, except for five, which encode structural virion proteins. Unique features of WSSV are the presence of a very long ORF of 18,234 nucleotides, with unknown function, a collagen-like ORF, and nine regions, dispersed along the genome, each containing a variable number of 250-bp tandem repeats. The collective information on WSSV and the phylogenetic analysis on the viral DNA polymerase suggest that WSSV differs profoundly from all presently known viruses and that it is a representative of a new virus family

    Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Get PDF
    Background: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results: Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions: Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections

    Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Get PDF
    Background: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results: Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions: Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections

    Expression Profile of Glossina pallidipes MicroRNAs During Symptomatic and Asymptomatic Infection With Glossina pallidipes Salivary Gland Hypertrophy Virus (Hytrosavirus)

    Get PDF
    The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infects tsetse flies predominantly asymptomatically and occasionally symptomatically. Symptomatic infections are characterized by overt salivary gland hypertrophy (SGH) in mass reared tsetse flies, which causes reproductive dysfunctions and colony collapse, thus hindering tsetse control via sterile insect technique (SIT). Asymptomatic infections have no apparent cost to the fly’s fitness. Here, small RNAs were sequenced and profiles in asymptomatically and symptomatically infected G. pallidipes flies determined. Thirty-eight host-encoded microRNAs (miRNAs) were present in both the asymptomatic and symptomatic fly profiles, while nine host miRNAs were expressed specifically in asymptomatic flies versus 10 in symptomatic flies. Of the shared 38 miRNAs, 15 were differentially expressed when comparing asymptomatic with symptomatic flies. The most up-regulated host miRNAs in symptomatic flies was predicted to target immune-related mRNAs of the host. Six GpSGHV-encoded miRNAs were identified, of which five of them were only in symptomatic flies. These virus-encoded miRNAs may not only target host immune genes but may also participate in viral immune evasion. This evidence of differential host miRNA profile in Glossina in symptomatic flies advances our understanding of the GpSGHV-Glossina interactions and provides potential new avenues, for instance by utilization of particular miRNA inhibitors or mimics to better manage GpSGHV infections in tsetse mass-rearing facilities, a prerequisite for successful SIT implementation

    Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like Particle Formation

    Get PDF
    Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ∼17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production
    corecore