28 research outputs found

    Pyramidal quantum dots: single and entangled photon sources and correlation studies

    Get PDF
    Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence

    Copper-nanostructure-modified laser-scribed electrodes based on graphitic carbon for electrochemical detection of dopamine and glucose

    Get PDF
    Background: Carbon-based nanostructures have been attracting major interest in many research fields, including chemical and biological sensing, because of their unique structural dimensions and excellent physical, chemical and mechanical properties. A recently developed laser scribing approach allows design and fabrication of flexible, graphitic carbon-based substrates for (bio-)electrochemical applications, as it provides highly robust and low-cost sensing platforms. Results: Here we demonstrate the fabrication of a highly reproducible laser-scribed graphitic electrode (LSE) on a polyimide (Kapton) film using a simple, do-it-yourself laser engraving system equipped with a 405 nm wavelength laser. Copper nanostructures were deposited onto an electrode surface via the electrodeposition process. The developed three-dimensional graphitic electrodes modified by nano copper/copper oxide species (LSE-Cu) were used for the detection of dopamine and glucose. Electrochemical studies of LSE-Cu showed that in the presence of nano-copper there is an apparent shift of the oxidation peaks of dopamine and ascorbic acid, allowing determination of dopamine without an interference effect, with an excellent sensitivity of 1321.54 mu A L mmol(-1) cm(-2). Furthermore, the LSE-Cu sensor exhibited highly satisfying analytical performance towards glucose electro-oxidation, with a reproducibility of 5.47% (RSD %). Conclusion: We have demonstrated a simple design, fabrication and passivation route for the preparation of LSEs performing as biosensors. Such a cost-effective and design-flexible system is highly suitable for developing a biosensing platform towards various target analytes and further miniaturization of the electrode

    Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates

    Get PDF
    We report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model, based on a set of coupled reaction-diffusion equations, one for each facet in the system, accounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature, concentration, and temporal-dependence of AlGaAs nanostructures on GaAs (111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In0.12_{0.12}Ga0.88_{0.88}As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In0.25_{0.25}Ga0.75_{0.75}As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation.Comment: 9 pages, 8 figure

    Statistical study of stacked/coupled site-controlled pyramidal quantum dots and their excitonic properties

    Get PDF
    We report on stacked multiple quantum dots (QDs) formed inside inverted pyramidal recesses, which allow for the precise positioning of the QDs themselves. Specifically, we fabricated double QDs with varying inter-dot distances and ensembles with more than two nominally highly symmetric QDs. For each, the effect of the interaction between QDs is studied by characterizing a large number of QDs through photoluminescence spectroscopy. A clear red-shift of the emission energy is observed together with a change in the orientation of its polarization, suggesting an increasing interaction between the QDs. Finally, we show how stacked QDs can help influencing the charging of the excitonic complexes

    Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures

    Get PDF
    Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs

    Tuning InP self-assembled quantum structures to telecom wavelength: A versatile original InP(As) nanostructure "workshop"

    Get PDF
    The influence of hydride exposure on previously unreported self-assembled InP(As) nanostructures is investigated, showing an unexpected morphological variability with growth parameters, and producing a large family of InP(As) nanostructures by metalorganic vapour phase epitaxy, from dome and ring-like structures to double dot in a ring ensembles. Moreover, preliminary microphotoluminescence data are indicating the capped rings system as an interesting candidate for single quantum emitters at telecom wavelengths, potentially becoming a possible alternative to InAs QDs for quantum technology and telecom applications

    On-demand single-photons from electrically-injected site-controlled pyramidal quantum dots

    Get PDF
    We report on the performance of electrically-injected pyramidal quantum dots (PQDs) in terms of single-photon emission. We previously presented the generation of entangled photon pairs from similarly structured devices. Here we show that it is also possible to obtain single-photons upon continuous wave excitation as well as pulsed excitation, obtaining a low g 2 (0) of 0.088  ±  0.059, by discarding re-excitation events within a single excitation pulse by applying time-gating techniques

    A site-controlled quantum dot light-emitting diode of polarization-entangled photons, violating Bell's inequality

    Get PDF
    The first site-controlled quantum dot light-emitting diode of non-classical light - single and polarization-entangled photons - violating Bell's inequality is presented in this work. The diode structure is based on highly symmetric, single, site-controlled pyramidal quantum dots

    Biexciton initialization by two-photon excitation in site-controlled quantum dots: the complexity of the antibinding state case

    Get PDF
    In this work, we present a biexciton state population in (111)B oriented site-controlled InGaAs quantum dots (QDs) by resonant two photon excitation. We show that the excited state recombines emitting highly pure single photon pairs entangled in polarization. The discussed cases herein are compelling due to the specific energetic structure of pyramidal InGaAs QDs—an antibinding biexciton—a state with a positive binding energy. We demonstrate that resonant two-photon excitation of QDs with antibinding biexcitons can lead to a complex excitation-recombination scenario. We systematically observed that the resonant biexciton state population is competing with an acoustic-phonon assisted population of an exciton state. These findings show that under typical two-photon resonant excitation conditions, deterministic biexciton state initialization can be compromised. This complication should be taken into account by the community members aiming to utilize similar epitaxial QDs with an antibinding biexciton
    corecore