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On-demand single-photons from electrically-injected site-controlled 

Pyramidal Quantum Dots 

S. T. Moroni, T. H. Chung, G. Juska, A. Gocalinska, and E. Pelucchi 

Tyndall National Institute, University College Cork, Dyke Parade, Cork, Ireland 
 

Abstract 
We report on the performance of electrically-injected Pyramidal Quantum Dots in terms of 

single-photon emission. We previously presented the generation of entangled photon pairs 

from similarly structured devices. Here we show that it is also possible to obtain single-

photons upon continuous wave excitation as well as pulsed excitation, obtaining a low g2(0) 

of 0.088±0.059, by discarding re-excitation events within a single excitation pulse by 

applying time-gating techniques.  

 

 

1. Introduction  

Integration, scalability, reproducibility and high quantum state fidelities: these are some of the main 

technological challenges to be tackled in order to achieve a realistic source of photons to be employed in 

quantum computation [1][2]. Semiconductor quantum dot (QD)-based light sources have recently been 

gaining great relevance in this perspective, as they can be employed for the generation of quantum light 

while allowing for processing by means of standard semiconductor-based fabrication and integration 

techniques. Semiconductor QDs have been demonstrated as sources of single photons [3][4][5], highly 

indistinguishable photons[6][7], entangled photon pairs with high fidelity[8][9][10], time-bin entangled 

photons [11] and more, thanks to their versatility and tunability. In addition to this, among the 

requirements for a QD-based technology for quantum computation, efficient electrical injection would 

allow an extremely simplified excitation scheme and therefore easier QD integration. 

Electroluminescence from semiconductor QDs has been reportedly achieved in the past[12], together 

with electrically driven single photon emission[13][14] and entangled photon emission[9][15], but only a 

few reported cases claimed to be site controlled as well[16][17]. Although, in most of these cases, it was 

generally about the possibility to statistically control the self-assembled QDs position, while the only 

instance of true deterministic site control of the electrically driven QDs was based on Pyramidal Quantum 

Dots (PQDs)[18][19], but without proof of single photon emission. Note also that references [18][19] 

discuss two different pyramidal site controlled material systems, each showing different challenges of 

their own, one based on AlGaAs barriers [20], the other on GaAs barriers. 

Here we report for the first time on the possibility of generating single photons by embedding PQDs 

into a PIN-junction device, a structure largely similar to previous designs for entangled photon emission 

reported in [19], and therefore proving single photon electrically driven emission from a true site-

controlled QD system. Besides the statistic regarding directly single-photon emission quality, we find that 

our analysis also provides interesting insight on the ability of filtering photon detection events to improve 

the performance of our devices. Our findings suggest, after a comparison with previous work on 

entangled-photon emission through electrical injection, that a good entangled photon emitter from QDs is 

not necessarily also a good single photon emitter (and, obviously, vice versa). We address this point more 

in detail further in our contribution. 
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2. Fabrication and characterization methods 

 

PQDs are fabricated starting from a (111)B GaAs wafer using a lithography based patterning 

technique to form an ordered array of inverted pyramidal recesses; Metalorganic Vapor Phase Epitaxy is 

then performed, allowing for the site control of the QDs, one for each recess. More recently we developed 

a more advanced type of device design for the realization of electrical injection. As detailed elsewhere 

[19], the QD is embedded into the intrinsic region of the PIN junction, whose detailed structure is 

reported in the supplementary material. The complex geometry and  copiousness of nanostructure 

formation (e.g. lateral quantum wires formed along the edges of the pyramidal recess and lateral quantum 

wells formed along its sidewalls, see [21] and references therein) of the pyramidal system makes it 

necessary to perform a number of processing steps to achieve the proper electrical contacting of the 

devices: insulation of the corners of the pyramid, masking of the insulation through tilted Au evaporation, 

selective removal of the insulation, P-side contacting, back-etching [22], and N-side contacting. For 

 

Fig.1: a) a sketch of a structure of a PQD-based LED; b) representative spectrum from an electrically injected PQD, showing 

a dominant X- behavior and an almost suppressed X and (inset) typical IV response of a PQD-based LED; c) autocorrelation 

for the X- transition from an electrically-driven PQD under DC bias excitation (black line) and fitting of the data using a 

𝑔2(𝜏) function convoluted with the response function for the measurement apparatus; d) CCD image of lit PQD-LEDs under 

DC bias excitation. 
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simplicity of fabrication, the scheme relies on the simultaneous contacting of all the pyramidal QD 

devices, which share the same top and bottom contacts and therefore share the same applied electrical 

bias. Henceforth the electrical properties of the device we will refer to in this paper will be the total 

ensemble current vs. voltage characteristics. A typical I-V curve for one of our devices is shown in Fig.1b 

(inset), where it can be seen that the exponential rise in the current is obtained at about 6 V. 

It is worth underling at this point the possible origin of the high turn-on voltage in our devices, 

compared to similar LED devices[23][9]. On one hand, the metal used for the metallization of the GaAs 

P-doped layer is not ideal and might be causing a Schottky barrier [24]. On the other hand, the carriers 

have to be channeled through a Ga-rich AlGaAs vertical quantum wire with a very small cross-section 

(<40 nm diameter through the centre of the pyramid)[19], which might cause a high resistance, although 

forcing the carrier through the centre of the structure, towards the QD. It is also relevant to note that 

different QDs could show different turn-on voltages: this is mainly due to the spread in etching depth of 

the original GaAs substrate on the top of each pyramid, resulting from the back-etching process. Each 

pyramidal structure presents a slightly different open area on the N-doped region for contacting, therefore 

leading to a distribution of surface resistances, from which the difference in turn-on voltages. 

The QDs were analyzed by low-temperature (10K) micro-electroluminescence spectroscopy using a 

100x magnification objective with a numerical aperture of 0.8, allowing for the spatial filtering of the 

light coming from different PQDs (which had a spacing of 10 μm) simply by scanning on the sample 

surface by means of piezoelectric actuators. Although the turn-on voltage was slightly different for each 

individual PQD diode, this was typically around 6 V; voltage at which it was possible to detect excitonic 

transitions.  

 

3. Results and discussion 

 

Fig.1b shows a representative spectrum from an electrically injected PQD under DC excitation. We 

identify each transition as exciton (X), biexciton (XX) and a negatively charged exciton (X-; based on 

previous results [25] where negatively charged excitons and positively charged excitons were 

systematically identified also by employing a second wavelength excitation for the release of extra holes 

in the surrounding of the QD), which is typically the predominant transition in terms of intensity. In some 

cases the exciton was completely suppressed by the excess of negative charges[25]. When operating in 

DC, it was possible to obtain single-photons from the X- transition, for example. We chose this transition 

to test for single photon emission mostly as it was the brightest transition of the excitonic ensemble, 

typically showing at least 3 times the exciton overall intensity, but also because the trion transition is 

ideally the more suited for single photon emission, not being subject to special selection rules [26]. 

Moreover, the X- transition is more suitable for the generation of indistinguishable photons, as it is not 

affected by a fine structure splitting and therefore more often studied for indistinguishability studies (see 

for example [27]). 

A standard HBT setup was employed for autocorrelation measurement. One representative case is 

shown in Fig.1c. Upon the application of 6.8 V, the 𝑔2(0)  autocorrelation function reaches 0.17, which 

has been fitted taking into account the detector response function (a Gaussian response with 400 ps 

FWHM).  
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In order to operate the device in pulsed excitation - and prove on demand generation of single photons 

- we applied a DC bias on the top of which we superimposed the AC pulses. From the I-V curve we can 

deduce the resistance of the device when the turn-on has been reached, which falls in the kΩ range. This 

high resistance causes a high impedance mismatch between the LEDs and the pulse generator (which has 

a standard 50 Ω output resistance). The mismatch could result in reflections of the signal at the device and 

re-excitation pulses. Since individual QDs had diverse turn-on voltages, different settings of the pulse 

generator (frequency, DC and AC voltages) resulted in different behaviors of the device in terms e.g. of 

intensity of the spectrum features and single-photon emission performance. For instance, an inefficient or 

insufficiently high excitation level leads to a low-intensity spectrum, while an excessive population of the 

QD would result in a quick re-excitation of the same transition. At different DC and AC voltage levels the 

whole apparatus and QD system had a different response also in terms of pulse reflections along the line, 

making it necessary to tune the excitation frequency as well. Therefore ad hoc settings had to be chosen 

                   

Fig.2: a) Emission dynamics of a PQD under pulsed electrical injection; b) to c) lifetime measurement for the two 

detectors employed (top) and autocorrelation measurement (bottom) in pulsed excitation selecting different time windows 

(highlighted in the top graph) within one excitation pulse period for the time gating filtering process: all detection events 

are selected in b), second-pulses events are discarded in c) by selecting a time window of 6.5 ns; the resulting 𝑔2(0) for 

each case is shown in the inset of the corresponding graph. 
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for each individual QD. Nonetheless, in most of the cases it was possible to find a set of parameters for 

which the PQD could be operated in pulsed excitation in a good regime for single-photon emission.  

Fig. 2 shows a representative case: in order to operate the device in pulsed excitation, we applied a DC 

bias of 0.85 V on the top of which we superimposed a pulse of 8.67 V and 1.425 ns pulse width with a 

frequency of 66 MHz. The autocorrelation from this type of excitation is presented in Fig.2b: 𝑔2(0) is 

0.185±0.057. As it can be seen in the time-dependence in Fig.2, reflections along the line often caused a 

low intensity second pulse. A time-gating technique was then employed in order to discard such second 

pulsing event. In this case, the correlation curves were obtained by recording all photon detection events 

in a time tag mode, followed by a post-construction procedure of the correlation curve [28]. This method 

allowed testing correlations of photons from different time windows using the raw data obtained at 

exactly the same experimental conditions. Fig.2c shows the autocorrelation obtained by considering 

detection events falling only in a determined time window (time gating). With a 6.5 ns wide window, the 

𝑔2(0) improves significantly to 0.088±0.059), which if corrected for noise levels and detectors time 

resolution, is effectively a very low value. 

Finally, we would like to discuss briefly the different filtering approaches employed in this work and 

in our previous work on the electrical excitation of PQDs for entangled photon emission [19]. While in 

this paper we applied a standard time gating technique (as e.g. in [29]) which allows filtering the 

detection events based on the lifetimes to discard re-excitation events and “restore” the single photon 

quality, in our previous work [19] we applied a different approach. In [19] we selected a time-window 

from the correlation measurement itself rather than from the lifetimes, therefore filtering time events 

based on the direct time difference between the detection of biexciton and exciton related photons coming 

in sequence in the cascade.  This other time-filtering technique allows selecting fast transitions between 

exciton and biexciton and, if a narrow enough time-window is selected, it discards biexciton re-excitation 

events, which is necessary but not sufficient to result in single-photon emission. Selecting photons based 

on the time separation of the biexciton and exciton means to discard background events coming from any 

type of source of contamination of the correlation and filter the photons which are part of an entangled 

pair even if they wouldn’t be per se single photon events. We could think of this method as of a specific 

filter for the selection of biexciton-exciton detection events correlated through a direct cascade. To 

provide an intuitive example, rapid re-excitation of biexciton might occur, followed by a recombination 

cascade which actually results in entangled photon pair emission, properly selected by the method 

employed in [19], although the biexciton second photon would degrade the single photon statistics (a 

similar argument might be employed for exciton re-excitation) and would be discarded in standard time-

gating techniques like the one employed in this paper, depending on the selected time-window. 

Although it might seem trivial, this was previously unreported for this specific case (and could 

effectively be useful for practical purposes), while, to some extent, has similarities to what is called, in 

downconversion processes, photon heralding (see e.g. [30]). The successful application of this post-

selection technique used in [19] means in principle that perfect single photon emission is not required to 

obtain high fidelity (>0.8) entangled photons. Our conclusion is that, although perfect entangled-photon 

emission is definitely limited by single photon pair quality, generally, high fidelity entanglement can be 

obtained from non-perfect single-photon emitting devices if the correct events are selected. 
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4. Conclusion  

 

In conclusion, we showed the single photon emission performance of PQDs under both DC and pulsed 

electrical excitation, yielding respectively a 𝑔2(0) of 0.17 and 0.185. In pulsed excitation, the application 

of a simple time gating technique allowed to discard re-excitation events and obtain a 𝑔2(0) of 0.088, 

therefore proving that it is possible in principle to achieve a high quality single photon emission from our 

devices. Further improvements will be the subject of future research, and could be achieved either by 

employing even shorter pulses or improving the overall injection of the PQD, for example reducing the 

contact resistance or producing smaller pyramids. 
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