461 research outputs found

    Pathophysiological Role of Omega Pore Current in Channelopathies

    Get PDF
    In voltage-gated cation channels, a recurrent pattern for mutations is the neutralization of positively charged residues in the voltage-sensing S4 transmembrane segments. These mutations cause dominant ion channelopathies affecting many tissues such as brain, heart, and skeletal muscle. Recent studies suggest that the pathogenesis of associated phenotypes is not limited to alterations in the gating of the ion-conducting alpha pore. Instead, aberrant so-called omega currents, facilitated by the movement of mutated S4 segments, also appear to contribute to symptoms. Surprisingly, these omega currents conduct cations with varying ion selectivity and are activated in either a hyperpolarized or depolarized voltage range. This review gives an overview of voltage sensor channelopathies in general and focuses on pathogenesis of skeletal muscle S4 disorders for which current knowledge is most advanced

    Hypokalemic periodic paralysis; two different genes responsible for similar clinical manifestations

    Get PDF
    Primary hypokalemic periodic paralysis (HOKPP) is an autosomal dominant disorder manifesting as recurrent periodic flaccid paralysis and concomitant hypokalemia. HOKPP is divided into type 1 and type 2 based on the causative gene. Although 2 different ion channels have been identified as the molecular genetic cause of HOKPP, the clinical manifestations between the 2 groups are similar. We report the cases of 2 patients with HOKPP who both presented with typical clinical manifestations, but with mutations in 2 different genes (CACNA1Sp.Arg528His and SCN4A p.Arg672His). Despite the similar clinical manifestations, there were differences in the response to acetazolamide treatment between certain genotypes of SCN4A mutations and CACNA1S mutations. We identified p.Arg672His in the SCN4A gene of patient 2 immediately after the first attack through a molecular genetic testing strategy. Molecular genetic diagnosis is important for genetic counseling and selecting preventive treatment

    The Genotype and Clinical Phenotype of Korean Patients with Familial Hypokalemic Periodic Paralysis

    Get PDF
    Familial hypokalemic periodic paralysis (HOPP) is a rare autosomal-dominant disease characterized by reversible attacks of muscle weakness occurring with episodic hypokalemia. Mutations in the skeletal muscle calcium (CACNA1S) and sodium channel (SCN4A) genes have been reported to be responsible for familial HOPP. Fifty-one HOPP patients from 20 Korean families were studied to determine the relative frequency of the known mutations and to specify the clinical features associated with the identified mutations. DNA analysis identified known mutations in 12 families: 9 (75%) were linked to the CACNA1S gene and 3 (25%) to the SCN4A gene. The Arg528His mutation in the CACNA1S gene was found to be predominant in these 12 families. Additionally, we have detected one novel silent exonic mutation (1950C>T) in the SCN4A gene. As for a SCN4A Arg669His mutation, incomplete penetrance in a woman was observed. Characteristic clinical features were observed both in patients with and without mutations. This study presents comprehensive data on the genotype and phenotype of Korean families with HOPP

    Myotonia permanens with Nav1.4-G1306E displays varied phenotypes during course of life

    Get PDF
    Myotonia permanens due to Nav1.4-G1306E is a rare sodium channelopathy with potentially life-threatening respiratory complications. Our goal was to study phenotypic variability throughout life

    Familial hyperkalemic periodic paralysis caused by a de novo mutation in the sodium channel gene SCN4A

    Get PDF
    Familial hyperkalemic periodic paralysis (HYPP) is an autosomaldominant channelopathy characterized by transient and recurrent episodes of paralysis with concomitant hyperkalemia. Mutations in the skeletal muscle voltage-gated sodium channel gene SCN4A have been reported to be responsible for this disease. Here, we report the case of a 16-year-old girl with HYPP whose mutational analysis revealed a heterozygous c.2111C>T substitution in the SCN4A gene leading to a Thr704Met mutation in the protein sequence. The parents were clinically unaffected and did not have a mutation in the SCN4A gene. A de novo SCN4A mutation for familial HYPP has not previously been reported. The patient did not respond to acetazolamide, but showed a marked improvement in paralytic symptoms upon treatment with hydrochlorothiazide. The findings in this case indicate that a de novo mutation needs to be considered when an isolated family member is found to have a HYPP phenotype

    Genetic heterogeneity in hypokalemic periodic paralysis

    Get PDF
    Abstract Hypokalemic periodic paralysis (hypoPP) is an autosomal dominant disorder belonging to a group of muscle diseases known to involve an abnormal function of ion channels. The latter includes hypokalemic and hyperkalemic periodic paralyses, and non-dystrophic myotonias. We recently showed genetic linkage of hypoPP to loci on chromosome lq31-32, co-localized with the DHP-sensitive calcium channel CACNL1A3. We propose to term this locus hypoPP-1. Using extended haplotypes with new markers located on chromosome lq31-32, we now report the detailed mapping of hypoPP-1 within a 7 cM interval. Two recombinants between hypoPP-1 and the flanking markers D1S413 and D1S510 should help to reduce further the hypoPP-1 interval. We used this new information to demonstrate that a large family of French origin displaying hypoPP is not genetically linked to hypoPP-1. We excluded genetic linkage over the entire hypoPP-1 interval showing for the first time genetic heterogeneity in hypoPE E. Plassart -A. Elbaz. J. V. Santos 9 J. Reboul 9 P. Lapie B. Fontaine ([5~) INSERM U134, H6pital de la Salp~tri6re
    corecore