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Abs t rac t  Hypokalemic periodic paralysis (hypoPP) is an 
autosomal dominant disorder belonging to a group of 
muscle diseases known to involve an abnormal function 
of ion channels. The latter includes hypokalemic and hy- 
perkalemic periodic paralyses, and non-dystrophic myoto- 
nias. We recently showed genetic linkage of hypoPP to 
loci on chromosome lq31-32,  co-localized with the 
DHP-sensitive calcium channel CACNL1A3. We propose 
to term this locus hypoPP-1. Using extended haplotypes 
with new markers located on chromosome lq31-32,  we 
now report the detailed mapping of hypoPP-1 within a 7 
cM interval. Two recombinants between hypoPP-1 and 
the flanking markers D1S413 and D1S510 should help to 
reduce further the hypoPP-1 interval. We used this new 
information to demonstrate that a large family of French 
origin displaying hypoPP is not genetically linked to 
hypoPP-1. We excluded genetic linkage over the entire 
hypoPP-1 interval showing for the first time genetic het- 
erogeneity in hypoPE 

E. Plassart - A. Elbaz. J. V. Santos �9 J. Reboul �9 P. Lapie 
B. Fontaine ([5~) 
INSERM U134, H6pital de la Salp~tri6re, 
47 boulevard de l'H6pital, F-75 013 Paris, France 

J. V. Santos �9 J. Guimaraes 
Serviqo Neurologia, Hospital de Egaz Moniz, P-1300 Lisboa, 
Portugal 

D. Chauveau 
D6partment de N6phrologie, H6pital Necker, F-75 015 Paris, 
France 
K. Jurkat-Rott. F. Lehmann-Horn 
Universit~it Ulm, Abteilung ftir Angewandte Physiologic, 
D-89081 Ulm, Germany 

J. M. Saudubray 
D6partment de P6diatrie, H6pital Necker, F-75 015 Paris, France 

J. Weissenbach 
Institut Pasteur, F-75015 Paris 
G6n6thon, F-91 000 Evry, France 

B. Fontaine 
F6d6ration de Neurologie, H6pital de la Salp~tri~re, 
F-75 013 Paris, France 

Introduction 

Periodic paralyses and non-dystrophic myotonias consti- 
tute a group of hereditary muscle disorders implicating an 
abnormal function of ion channels. These ion chan- 
nelopathies include hypokalemic and hyperkalemic peri- 
odic paralysis, paramyotonia congenita, and myotonia 
congenita. 

Hyperkalemic periodic paralysis (MIM 170500, 
McKusick 1990), paramyotonia congenita (MIM 168 300, 
McKusick 1990) and their variants are transmitted with an 
autosomal dominant inheritance with complete pene- 
trance and variable expressivity. By a candidate gene ap- 
proach, these muscle disorders were shown to be caused 
by allelic mutations of  the muscle sodium channel gene 
SCN4A located on chromosome 17q22-23 (Fontaine et 
al. 1990; George et al. 1991; Barchi 1992; Ptacek et al. 
1993; Fontaine 1993; Hoffman and Wang 1993; Rtidel et 
al. 1993; Heine et al. 1993; Plassart et al. 1994). 

Myotonia congenita displays both autosomal dominant 
(MIM 160 800, McKusick 1990) and recessive (MIM 255 
700, McKusick 1990) modes of transmission. By analogy 
with a murine model of myotonia congenita and using in- 
terspecies conservation of syntenic loci, both forms of 
myotonia were shown to implicate the muscle chloride 
channel CLCN1 (Abdalla et al. 1992; Koch et al. 1992, 
1993; George et al. 1993). 

The last member  of this group of muscle disorders is 
hypokalemic periodic paralysis (hypoPP). HypoPP (MIM 
170400, McKusick 1990) is of  autosomal dominant 
inheritance. The onset of  the disease is usually in the sec- 
ond decade. Patients present with acute and reversible at- 
tacks of  muscle weakness accompanied by a fall in blood 
potassium levels. Muscle weakness during attacks is due 
to the persistent depolarization of the sarcolemmal mem- 
brane (Rtidel and Ricker 1985). An abnormal influx of 
sodium was recorded in muscle fibers of  hypoPP patients 
when decreasing the extracellular level of potassium 
(Lehmann-Horn et al. 1987). The nature of the abnormal 
ion channel and the mechanisms leading to hypokalemia 
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are still unknown.  However, sarcolemmal ion channels 
or the genes regulating their function are candidate genes 
for the defect. In this context, hypoPP was shown to be 
non-allel ic to the other ion channelopathies (Fontaine et 
al. 1990, 1991; Casley et al. 1992). Using highly poly- 
morphic dinucleotide repeats, we recently mapped one 
hypoPP locus (hypoPP-1) to chromosome 1q31-32 co-lo- 
calized with the o~1 subunit  of the DHP-sensi t ive calcium 
channel  ( C A C N L I A 3 )  in three hypoPP families of Euro- 
pean origin (Fontaine et al. 1994). In this article, we pre- 
sent a finer mapping of the hypoPP-1 locus by analysis 
of extended haplotypes in recombinant  individuals 
with closely linked markers. Moreover, we demonstrate 
the existence of a second locus in one family of French 
origin. 

Subjects and methods 

Clinical evaluation 

Family A has already been described by Fontaine et al. (1994). In 
order to permit comparison with the data reported in Fontaine et al. 
(1994), we kept the same numbering for the families and the indi- 
viduals presented in the former article. Therefk)re, the second fam- 
ily described in this paper was referred to as family D. Diagnostic 
criteria were those described by Buruna and Schipperheyn (1979), 
McKusick (1990), and Lehmann-Horn et al. (1993). Clinical char- 
acteristics of families A and D are summarized in Table 1 and the 
pedigrees are shown in Fig. 1. 

DNA analysis 

Blood samples were collected from all participating individuals af- 
ter they had given their written informed consent. The protocol of 
this study was approved by the ethics committee of La Salp~tribre 
Hospital and is in accord with the 1964 Declaration of Helsinki. 
DNA was prepared using standard methods (Gusella 1986). Ge- 
netic markers and genetic maps used in this study were described 
in Weissenbach et al. (1992) and Gyapay et al. (1994). The chro- 
mosome lq map with the relative position of the markers is shown 
in Fig. 2. D1S477, DISSI0 and DIS456 (Gyapay et al. 1994) were 
used in addition to markers typed in Fontaine et al. (1994). The 
likelihood of the order of the loci and distances were established 
with odds over 103: 1. Genotyping was performed by the poly- 
merase chain reaction (PCR)/blotting technique of Hazan et al. 
(1992). 

Results 

Two crucial recombinat ion events bracket the hypoPP- 1 
locus on chromosome 1 

Four markers located between the f lanking markers of the 
hypoPP locus D1S413 and D1S249 (Fontaine et al. 1994) 
were tested in this study. For families B and C described 
in Fontaine et al. (1994), no more information was ob- 
tained than that reported in Fontaine et al. (1994) (data not 
shown). As expected in family A, two-point  lod scores 
were positive for all markers located between DIS413  
and D1S249 (Table 2). The haplotypes are shown in Fig. 
1A. Two affected individuals bear recombinant  haplo- 
types important for localizing the hypoPP locus. The re- 
combinat ions  occurred in individual AII2 (visible in indi- 
viduals AIII2 and AIII8). The recombinat ion is located 
telomeric to D1S413 and centromeric to D1S510 for 
AIII2 and AIlI8 respectively (Fig. 1A), The two crucial 
recombinants  localize the hypoPP-1 locus on chromo- 
some 1 within a 7 cM interval flanked by D1S413 and 
D1SS10 (Fig. 2). 

In our initial study, an ambiguity remained concerning 
individual  AIII1 (Fontaine et al. 1994). A recombinat ion 
centromeric to D1S245 occurred in individual AII2 visi- 
ble in AIII1. AIIII  is a clinically unaffected woman. 
However,  g iven the know n  incomple te  penetrance of 
hypoPP in women,  we could not discriminate between 
a recombinat ion centromeric to the hypoPP locus in an 
affected but asymptomatic  woman,  or telomeric to the 
hypoPP locus in an unaffected woman. We clearly show 
that the recombinat ion event in AIII1 occurred telomeric 
to D1S456, at a distance from the hypoPP locus. This re- 
sult is in accord with the unaffected status of AIII1. 

Genetic heterogeneity in hypoPP 

We first excluded genetic linkage of hypoPP to the muscle 
sodium channel  SCN4A with an intragenic microsatellite 

Table 1 Summary of the clinical features 

Family A Family D 
(n= 15) (n=9)  

Mean age of onset in years 11 (2-15) 10 (7-15) 
(range) 

Mean duration in years 
(range) 

Duration of attacks 
Pattern of weakness 
Provocating factors 

Linkage analysis 

Pairwise lod scores were calculated using the MLINK program of 
the LINKAGE package (version 5.1) (Lathrop et al. 1985). The 
mode of inheritance of the disease was considered to be autosomal 
dominant with a frequency of 0.0001. To take into account incom- 
plete penetrance in women, penetrances of 100% and 90% were 
chosen for men and women respectively as described in Fontaine 
et al. (1994). Lod scores were calculated both with the assumption 
of equal allele frequencies, and with the allele frequencies deter- 
mined in C.E.P.H. pedigrees. Lod scores were similar with both 
methods. Recombination fractions were converted to map dis- 
tances using the Haldane mapping function. The HOMOG pro- 
gram (version 3.10) was used to test genetic homogeneity (Ott 
1991). 

37 (1 72) 20 (2-53) 

3 t o 6 0 h  4 t o 3 6 h  
Quadriparesia Quadriparesia 
Exercise Exercise 
Cold Cold 
Carbohydrates Carbohydrates 
Alcohol 

Documented hypokalemia 
during attacks n = 4 n =3 

Permanent muscle weakness n =4 n =2 
Response to acetazolamide Positive Not tested 
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Fig. 1 A,B Pedigrees of two families with hypokalemic periodic 
paralysis (hypoPP). Affected individuals and unaffected individu- 
als are represented by black and open symbols respectively. Indi- 
viduals DII3 and DIII9 were reported to be asymptomatic through- 
out their life by the other members of the family but no definitive 
clinical report was available. They are represented by a hatched 
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symbol (status unknown in the linkage analysis). Genotypes for 
microsatellite markers D1S413, DIS477, DIS306, D1S510, D1S456, 
are shown for both families. Genotypes for D1S238 and D1S245 
are indicated only for family A. The haplotype segregating with 
HypoPP in family A is boxed. Haplotypes between brackets are 
deduced. Recombination events are indicated by arrowheads 
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Tab le  2 Pairwise lod scores be tween ch romosome  lq markers and hypoPP in Families A and D 

Locus Recombinat ion fraction 

0.00 0.01 0.05 0.10 0.20 0.30 0.40 tmax :max  

DIS413 A -~c 3.83 4.15 3.96 3.19 2.17 0.98 0.05 4.16 
D -~c -8 .80  4 . 8 7  -3 .05 -1 .37  -0 .59  -0.21 

D 1 $477 A 1.46 1.44 1.34 1.21 0.92 0.62 0.30 0.01 I. 15 
D - ~  2.94 1.64 1.09 ~ . 4 8  -0 .15  -0 .03 

D 1 $306 A Non-informat ive  
D -~c -6 .52  -3 .62  -2 .36  -1 .16  -0 .58  0.25 

D1S510 A -zc  1.94 2.40 2.37 1.95 1.32 0.56 0.08 2.55 
D zc 8.20 -4.61 -3 .02  - 1.49 -0 .70  0.25 

D1 $456 A - ~  3.49 3.92 3.82 3.16 2.19 1.00 0.06 3.92 
D Non-informat ive  

F i g . 2  Genetic regional map of  
ch romosome  lq. Markers used 
for the linkage analysis are in- 
dicated with their respect ive 
genetic distances. The most  
likely localization of  hypoPP-1 
is indicated in the right part of  
the figure. In the left part o f  
the figure, the intervals of  ex- 
cluskm, as determined by the 
pairwise lod score analysis, are 
shown for family D 
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(McClatchey et al. 1992) in family D (data not shown). 
Family D was then analyzed with the markers located 
within, and flanking, the hypoPP-1 interval (Fig. 2). As 
shown in Table 2, pairwise lod scores were negative. The 
distance of exclusion as defined by genetic intervals with 
lod scores below -2.00 as 15 cM for D1S413, 3 cM for 
D1S477, 13 cM for D1S306 and 17 cM for D1S510 (Fig. 
2). Therefore, the 7 cM interval flanked by D1S413 and 
D1S510, which defines the hypoPP-I  locus is entirely ex- 
cluded by these intervals of  exclusion (Fig. 2). A multi- 
point analysis could not be performed with the available 
programs and computers because of the consanguinity 
loop in family D. Breaking the loop resulted in more neg- 
ative pairwise lod-scores, which led to an overestimation 
of the excluded interval (data not shown). Therefore, we 
chose the most conservative option, which is the pairwise 
lod-score analysis shown in Fig. 2. 

To confirm the results of  the pairwise lod-score analy- 
sis, we performed a homogeneity test with the program 
HOMOG, taking into account the families linked to the 
hypoPP-1 described in Fontaine et al. (1994). Posterior 
probabilities of  linked type to D1 $413, D 1 $477, D 1 $306 
and DIS510  were 0.00 for family D. Haplotypes were re- 
constructed (Fig. 1B). No co-segregation between a haplo- 
type and hypoPP was observed in family D (Fig. 1B). The 
most likely interpretation of the pairwise lod scores, the 
HOMOG analysis, and the reconstruction of haplotypes is 
that hypoPP is a genetically heterogeneous disorder. 

Discussion 

We localized the hypoPP-1 locus to chromosome lq31-32 
(Fontaine et al. 1994). In our initial study, we also re- 
ported the co-localization of the hypoPP-1 locus and the 
DHP-sensitive calcium channel ~1 subunit (CACNL 1A3) 
(Fontaine et al. 1994). To define further the hypoPP-1 lo- 
cus, we set up a genetic study with extended haplotypes 
using new markers. In addition to the markers used in 
Fontaine et al. (1994), three recently described markers 
mapping within the interval defined by DIS413 and 
D1S249 were used in this study (Gyapay et al. 1994). The 
hypoPP-1 locus was reduced to 7 cM and two important 
recombinants were identified on both sides of the locus in 
family A (AIII2 and AIII8). These two recombinants will 
be crucial to orient the progression toward the hypoPP 
gene. However, AIII2 is recombinant with D1S413 and 
uninformative for the available DNA polymorphisms for 
CACNL1A3 (Fontaine et al. 1994). Because the most 
likely localization of CACNL1A3 is either centromeric or 
telomeric to D1S413 (Fontaine et al. 1994), we still do 
not know whether CACNL1A3 only maps within the 
hypoPP-1 interval. Answering this question will require 
development of  new microsatellites in the region and new 
DNA polymorphisms in CACNL1A3. 

The second important set of results reported in this ar- 
ticle is the evidence of the existence of a second hypoPP 
locus in family D. Family D is of  French origin and dis- 
plays hypoPP. Hypokalemia was indeed demonstrated 
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during attacks in at least three different index cases. No 
clinical peculiarities were noted in family D. The age of 
onset, the duration of the attacks, and the provocative fac- 
tors were similar to those of the other hypoPP families. 
Patients in family D were successfully treated by potas- 
sium salt supplementation, Therefore, the acetazolamide 
response was not tested. As in other families, some pa- 
tients displayed, in addition to attacks, a fixed muscle 
weakness due to a vacuolar myopathic process (Links et 
al. 1990). So, although almost clinically similar to the 
other hypoPP families, family D did not show genetic 
linkage to the hypoPP-1 locus. Moreover, genetic linkage 
was excluded over the entire hypoPP-I interval. A similar 
situation has been described for sodium channelopathies. 
Although the vast majority of  normokalemic and hyper- 
kalemic periodic paralysis families are genetically linked 
and demonstrate mutations in SCN4A, one hyperkalemic 
periodic paralysis family of Yugoslavian origin did not 
show genetic linkage to SCN4A (Wang et al. 1993). In 
chloride channelopathies however, no evidence of genetic 
heterogeneity was reported (Koch et al. 1993). Another 
disease implicating ion channels is malignant hyperther- 
mia susceptibility (MHS). MHS is a potentially lethal dis- 
order of  autosomal dominant inheritance. The gene defect 
has been mapped to chromosome 19q12-13.2 and muta- 
tions were discovered in the skeletal muscle calcium re- 
lease channel of  the sarcoplasmic reticulum (ryanodine 
receptor, RYD 1) (McCarthy et al. 1990; MacLennan et al. 
1990; Gillard et al. 1991; Hogan et al, 1992). Genetic het- 
erogeneity was demonstrated with the identification of 
two other loci, one on chromosome 17q22-23 (Levitt et 
al. 1992; Olckers et al. 1992), and one that does not map 
either to 19q or 17q (Sudbrak et al. 1993; Iles et al. 1993). 
The fact that muscle disorders caused by different defec- 
tive genes exhibit the same phenotype suggests that the 
products of the implicated genes may cooperate in a still 
undetermined manner to result in an appropriate muscle 
contraction. The identification of these genes through stud- 
ies of  families presenting ion channelopathies may lead to 
a better basic understanding of the interaction between ion 
channels or with the genes regulating their function. 
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