61 research outputs found

    A rapid and sensitive diagnosis of bovine leukaemia virus infection using the nested shuttle polymerase chain reaction

    Get PDF
    Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). In Argentina, where a program to eradicate EBL has been introduced, sensitive and reliable diagnosis has attained high priority. Although the importance of the agar gel immunodiffusion test remains unchanged for routine work, an additional diagnostic technique is necessary to confirm cases of sera with equivocal results or of calves carrying maternal antibodies. Utilizing a nested shuttle polymerase chain reaction, the proviral DNA was detected from cows experimentally infected with as little as 5 ml of whole blood from BLV seropositive cows that were nonetheless normal in haematological terms. It proved to be a very sensitive technique, since it rapidly revealed the presence of the provirus, frequently at 2 weeks postinoculation and using a two-round procedure of nested PCR taking only 3 hours. Additionally, the primers used flanked a portion of the viral genome often employed to differentiate BLV type applying BamHI digestion. It is concluded that this method might offer a highly promising diagnostic tool for BLV infection.Facultad de Ciencias Veterinaria

    A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites

    Get PDF
    Objective. The Babesia bovis genome encodes a rap-1 related gene denominated RAP-1 related antigen (RRA). In this study, we analysed the pattern of expression, immunogenicity and functional relevance of RRA. Methods. Phylogenetic analysis was performed using the program Phylip. Expression of rra was analysed by Northern blots, RT-PCR, immunoprecipitation, Western blots and immunofluorescence. RRA antigenicity was tested by T-cell proliferation and Western blot analysis, and functional relevance was determined in an in vitro neutralization assay. Results. RRA is more closely related to RAP-1b of Babesia bigemina than to B. bovis RAP-1, and it is highly conserved among distinct strains. Transcriptional analysis suggests lower numbers of rra transcripts compared to rap-1. Immunoprecipitation of metabolically labelled B. bovis proteins with antibodies against synthetic peptides representing predicted antigenic regions of RRA confirmed the expression of a ∼43 kDa RRA in cultured merozoites. Antibodies present in B. bovis hyperimmune sera, but not in field-infected cattle sera, reacted weakly with recombinant RRA, and no significant stimulation was obtained using recombinant RRA as antigen in T-cell proliferation assays, indicating that RRA is a subdominant antigen. Antibodies against RRA synthetic peptides reacted with merozoites using immunofluorescence, and were able to significantly inhibit erythrocyte invasion in in vitro neutralization tests, suggesting functional relevance for parasite survival. Conclusion. B. bovis express a novel subdominant RAP-1-like molecule that may contribute to erythrocyte invasion and/or egression by the parasite.Fil: Suarez, Carlos E.. United States Department of Agriculture. Agriculture Research Service; Estados Unidos. Washington State University; Estados UnidosFil: Laughery, Jacob M.. Washington State University; Estados UnidosFil: Bastos, Reginaldo G.. Washington State University; Estados UnidosFil: Johnson, Wendell C.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Norimine, Junzo. Washington State University; Estados UnidosFil: Asenzo, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas; ArgentinaFil: Brown, Wendy C.. Washington State University; Estados UnidosFil: Jacobsen, Monica Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas; ArgentinaFil: Goff, Will L.. United States Department of Agriculture. Agriculture Research Service; Estados Unido

    Breadth of the CD4+ T cell response to Anaplasma marginale VirB9-1, VirB9-2 and VirB10 and MHC class II DR and DQ restriction elements

    Get PDF
    MHC class II molecules influence antigen-specific CD4(+) T-lymphocyte responses primed by immunization and infection. CD4(+) T-cell responses are important for controlling infection by many bacterial pathogens including Anaplasma marginale, and are observed in cattle immunized with the protective A. marginale outer membrane (OM) vaccine. Immunogenic proteins that comprise the protective OM vaccine include type IV secretion system (T4SS) proteins VirB9-1, VirB9-2, and VirB10, candidates for inclusion in a multi-epitope vaccine. Our goal was to determine the breadth of the VirB9-1, VirB9-2, and VirB10 T-cell response and MHC class II restriction elements in six cattle with different MHC class II haplotypes, defined by DRB3, DQA, and DQB allele combinations for each animal. Overlapping peptides spanning each T4SS protein were tested in T-cell proliferation assays with autologous antigen presenting cells (APC) and artificial APC expressing combinations of bovine DR and DQ molecules. Twenty immunostimulatory peptides were identified; three representing two or more epitopes in VirB9-1, ten representing eight or more epitopes in VirB9-2, and seven representing seven or more epitopes in VirB10. Of eight DRA/DRB3 molecules, four presented 15 peptides, which was biased as DRA/DRB3*1201 presented ten and DRA/DRB3*1101 presented four peptides. Four DQA/DQB molecules composed of two intrahaplotype and two interhaplotype pairs presented seven peptides, of which five were uniquely presented by DQ molecules. In addition,three functional mixed isotype (DQA/DRB3) restriction elements were identified. The immunogenicity and broad MHC class II presentation of multiple VirB9-1, VirB9-2, and VirB10 peptide epitopes justify their testing as a multi-epitope vaccine against A. marginale

    Cattle with a low bovine leukemia virus proviral load are rarely an infectious source

    Get PDF
    Bovine leukemia virus (BLV) is an etiological agent of fatal B-cell leukemia and malignant lymphoma in cattle. Cattle with higher BLV proviral loads represent a higher risk of both horizontal and vertical transmission. Therefore, quantifying the proviral load of BLV is important in identifying major infectious sources and protecting BLV-free cattle from exposure to infected cattle. In this study, we confirmed that cattle with very low BLV proviral loads did not transmit the virus to virus-free cattle under conventional conditions. We observed a total of 7 tests in which a BLV-infected bull was allowed to cohabit with 57 to 92 BLV-free cattle for 12 or 22 months. We then evaluated the frequency of viral transmission. A BLV-infected bull with a “very low proviral load” (i.e., fewer than 100 proviral copies/50 ng of genomic DNA) did not transmit the virus to any virus-free cattle in 2 out of 2 tests. However, a BLV-infected bull with a “low proviral load” (i.e., 100 to 500 copies/50 ng) transmitted the virus to a total of 3 virus-free cattle in 2 out of 5 tests. These results suggest that BLV-infected cattle with “very low proviral loads” do not transmit the virus under conventional conditions, while cattle with “low proviral loads” can transmit the virus, although at low rates. We believe that the results of this study will promote the construction of effective measures to prevent BLV infection and control the spread of BLV

    Physical linkage of naturally complexed bacterial outer membrane proteins enhances immunogenicity

    No full text
    The outer membrane proteins (OMPs) of bacterial pathogens are essential for their growth and survival and especially for attachment and invasion of host cells. Since the outer membrane is the interface between the bacterium and the host cell, outer membranes and individual OMPs are targeted for development of vaccines against many bacterial diseases. Whole outer membrane fractions often protect against disease, and this protection cannot be fully reproduced by using individual OMPs. Exactly how the interactions among individual OMPs influence immunity is not well understood. We hypothesized that one OMP rich in T-cell epitopes can act as a carrier for an associated OMP which is poor in T-cell epitopes to generate T-dependent antibody responses, similar to the hapten-carrier effect. Major surface protein 1a (MSP1a) and MSP1b1 occur as naturally complexed OMPs in the Anaplasma marginale outer membrane. Previous studies demonstrated that immunization with the native MSP1 heteromer induced strong immunoglobulin G (IgG) responses to both proteins, but only MSP1a stimulated strong CD4+ T-cell responses. Therefore, to test our hypothesis, constructs of CD4+ T-cell epitopes from MSP1a linked to MSP1b1 were compared with individually administered MSP1a and MSP1b1 for induction of MSP1b-specific IgG. By linking the T-cell epitopes from MSP1a to MSP1b1, significantly higher IgG titers against MSP1b1 were induced. Understanding how the naturally occurring intermolecular interactions between OMPs influence the immune response may lead to more effective vaccine design

    Immunodominant Epitopes in Babesia bovis Rhoptry-Associated Protein 1 That Elicit Memory CD4(+)-T-Lymphocyte Responses in B. bovis-Immune Individuals Are Located in the Amino-Terminal Domain

    No full text
    Babesia bovis rhoptry-associated protein 1 (RAP-1), which confers partial protection against B. bovis challenge, is recognized by antibodies and T lymphocytes from cattle that have recovered from infection and are immune to subsequent challenge. RAP-1 is a 60-kDa protein with an N-terminal (NT) region that contains four cysteine residues conserved among all Babesia RAP-1 family members and a C-terminal (CT) region that contains multiple, degenerate, tandem 23-amino-acid (aa) repeats. To define the location of CD4(+)-T-cell epitopes for vaccine development using a recombinant protein or minigene construct, a series of truncated recombinant RAP-1 proteins and peptides were tested for stimulation of T-cell lines derived from B. bovis-immune cattle. CD4(+)-T-cell lines from three B. bovis-immune cattle with different DRB3 haplotypes responded to the NT region of RAP-1, whereas T cells from only one animal responded weakly to the CT region. T-cell lines from the three individuals recognized two to six NT-region peptides spanning aa 134 to 316 and representing at least four dominant epitopes. Using RAP-1-specific CD4(+)-T-cell clones, two NT-region epitopes, EYLVNKVLYMATMNYKT (aa 187 to 203) and EAPWYKRWIKKFR (aa 295 to 307), and one CT-region repeat epitope, FREAPQATKHFL, which is present twice at aa positions 391 to 402 and 414 to 425, were identified. Several peptides representing degenerate repeats of the agonist CT-region peptide FREAPQATKHFL neither stimulated responses of T-cell clones specific for this peptide nor inhibited responses to the agonist peptide. Upon stimulation with specific antigen, T-cell clones specific for NT or CT epitopes produced gamma interferon. The presence of T-helper-cell epitopes in the NT domain of RAP-1, which is highly conserved among otherwise antigenically different strains of B. bovis, supports the inclusion of this region in vaccine constructs to be tested in cattle

    Rapid deletion of antigen-specific CD4+ T cells following infection represents a strategy of immune evasion and persistence for Anaplasma marginale

    No full text
    Acquired T cell immunity is central for protection against infection. However, the immunological consequences of exposing memory T cells to high Ag loads during acute and persistent infection with systemic pathogens are poorly understood. We investigated this by using infection with Anaplasma marginale, a ruminant pathogen that replicates to levels of 10(9) bacteria per ml of blood during acute infection and maintains mean bacteremia levels of 10(6) per ml during long-term persistent infection. We established that immunization-induced Ag-specific peripheral blood CD4(+) T cell responses were rapidly and permanently lost following infection. To determine whether these T cells were anergic, sequestered in the spleen, or physically deleted from peripheral blood, CD4(+) T lymphocytes from the peripheral blood specific for the major surface protein (MSP) 1a T cell epitope were enumerated by DRB3*1101 tetramer staining and FACS analysis throughout the course of immunization and challenge. Immunization induced significant epitope-specific T lymphocyte responses that rapidly declined near peak bacteremia to background levels. Concomitantly, the mean frequency of tetramer(+)CD4(+) cells decreased rapidly from 0.025% before challenge to a preimmunization level of 0.0003% of CD4(+) T cells. Low frequencies of tetramer(+)CD4(+) T cells in spleen, liver, and inguinal lymph nodes sampled 9-12 wk postchallenge were consistent with undetectable or unsustainable Ag-specific responses and the lack of T cell sequestration. Thus, infection of cattle with A. marginale leads to the rapid loss of Ag-specific T cells and immunologic memory, which may be a strategy for this pathogen to modulate the immune response and persist

    Identification of Anaplasma marginale Outer Membrane Protein Antigens Conserved between A. marginale Sensu Stricto Strains and the Live A. marginale subsp. centrale Vaccine

    No full text
    Live vaccination with Anaplasma marginale subsp. centrale (synonym for Anaplasma centrale ) induces protection against severe disease upon challenge with A. marginale sensu stricto strains. Despite over a century of field use, the targets of protective immunity remained unknown. Using a broad proteomic approach, we identified the proteins in a challenge sensu stricto strain that were bound by the relevant antibody isotype induced by live vaccination with Anaplasma marginale subsp. centrale. A core of 15 proteins was identified in vaccinated animals across multiple major histocompatibility complex (MHC) haplotypes. This core separated into two structural/functional classes: “housekeeping” proteins involved in replication and metabolism and outer membrane proteins (OMPs). Orthologous proteins of both classes were identified within the vaccine strain and among sensu stricto strains. In contrast to the broad conservation among strains in the sequences of the housekeeping proteins, there was significantly greater divergence in the OMPs and greater divergence in both OMP sequences and the encoding locus structure between the vaccine strain and the sensu stricto strains than among the sensu stricto strains. The OMPs bound by live vaccine-induced antibody overlapped with OMPs that were immunogenic in animals vaccinated with inactivated vaccines and subsequently protected against bacteremia and disease. The identification of this core set of OMPs is consistent with the hypothesis that “subdominant” immunogens are required for vaccine-induced protection against A. marginale and provides clear direction for development of a safer, more effective vaccine
    corecore