86 research outputs found

    Frustratingly Easy Transferability Estimation

    Full text link
    Transferability estimation has been an essential tool in selecting a pre-trained model and the layers of it to transfer, so as to maximize the performance on a target task and prevent negative transfer. Existing estimation algorithms either require intensive training on target tasks or have difficulties in evaluating the transferability between layers. We propose a simple, efficient, and effective transferability measure named TransRate. With single pass through the target data, TransRate measures the transferability as the mutual information between the features of target examples extracted by a pre-trained model and labels of them. We overcome the challenge of efficient mutual information estimation by resorting to coding rate that serves as an effective alternative to entropy. TransRate is theoretically analyzed to be closely related to the performance after transfer learning. Despite its extraordinary simplicity in 10 lines of codes, TransRate performs remarkably well in extensive evaluations on 22 pre-trained models and 16 downstream tasks

    ConCL: Concept Contrastive Learning for Dense Prediction Pre-training in Pathology Images

    Full text link
    Detectingandsegmentingobjectswithinwholeslideimagesis essential in computational pathology workflow. Self-supervised learning (SSL) is appealing to such annotation-heavy tasks. Despite the extensive benchmarks in natural images for dense tasks, such studies are, unfortunately, absent in current works for pathology. Our paper intends to narrow this gap. We first benchmark representative SSL methods for dense prediction tasks in pathology images. Then, we propose concept contrastive learning (ConCL), an SSL framework for dense pre-training. We explore how ConCL performs with concepts provided by different sources and end up with proposing a simple dependency-free concept generating method that does not rely on external segmentation algorithms or saliency detection models. Extensive experiments demonstrate the superiority of ConCL over previous state-of-the-art SSL methods across different settings. Along our exploration, we distll several important and intriguing components contributing to the success of dense pre-training for pathology images. We hope this work could provide useful data points and encourage the community to conduct ConCL pre-training for problems of interest. Code is available.Comment: Accepted as an ECCV 2022 paper. Code is available at https://github.com/Jiawei-Yang/ConCL or https://github.com/TencentAILabHealthcare/ConC

    GeoLocator: a location-integrated large multimodal model for inferring geo-privacy

    Full text link
    Geographic privacy or geo-privacy refers to the keeping private of one's geographic location, especially the restriction of geographical data maintained by personal electronic devices. Geo-privacy is a crucial aspect of personal security; however, it often goes unnoticed in daily activities. With the surge in the use of Large Multimodal Models (LMMs), such as GPT-4, for Open Source Intelligence (OSINT), the potential risks associated with geo-privacy breaches have intensified. This study develops a location-integrated GPT-4 based model named GeoLocator and designs four-dimensional experiments to demonstrate its capability in inferring the locational information of input imageries and/or social media contents. Our experiments reveal that GeoLocator generates specific geographic details with high accuracy and consequently embeds the risk of the model users exposing geospatial information to the public unintentionally, highlighting the thread of online data sharing, information gathering technologies and LLMs on geo-privacy. We conclude with the broader implications of GeoLocator and our findings for individuals and the community at large, by emphasizing the urgency for enhanced awareness and protective measures against geo-privacy leakage in the era of advanced AI and widespread social media usage.Comment: 16pages, 2 figure

    Learning to Check Contract Inconsistencies

    Full text link
    Contract consistency is important in ensuring the legal validity of the contract. In many scenarios, a contract is written by filling the blanks in a precompiled form. Due to carelessness, two blanks that should be filled with the same (or different)content may be incorrectly filled with different (or same) content. This will result in the issue of contract inconsistencies, which may severely impair the legal validity of the contract. Traditional methods to address this issue mainly rely on manual contract review, which is labor-intensive and costly. In this work, we formulate a novel Contract Inconsistency Checking (CIC) problem, and design an end-to-end framework, called Pair-wise Blank Resolution (PBR), to solve the CIC problem with high accuracy. Our PBR model contains a novel BlankCoder to address the challenge of modeling meaningless blanks. BlankCoder adopts a two-stage attention mechanism that adequately associates a meaningless blank with its relevant descriptions while avoiding the incorporation of irrelevant context words. Experiments conducted on real-world datasets show the promising performance of our method with a balanced accuracy of 94.05% and an F1 score of 90.90% in the CIC problem.Comment: Accepted by AAAI 202

    IMAGING GENOMICS

    Get PDF

    Hierarchical Graph Capsule Network

    Full text link
    Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.Comment: AAAI 2021; Code: https://github.com/uta-smile/HGC
    corecore