49 research outputs found

    Model to estimate the trapping parameters of cross-linked polyethylene cable peelings of different service years and their relationships with dc breakdown strengths

    No full text
    In this study, an improved trapping/detrapping model was used to simulate the charge dynamics in cross-linked polyethylene peelings from different-year aged cables. Injection barrier of trapping parameters was estimated by the model fitted to experimental data for each type of sample. Moreover, dc breakdown tests were operated on those samples. It has been found that the dc breakdown strength of inner-layer samples is the lowest in cable sections with thicker insulation layer taken from high-voltage ac (HVAC) 220 kV service condition, whereas for the cable with thinner insulation from HVAC 110 kV, middle-layer samples have worst breakdown performance. This might be explained by the space charge issues under long-term HVAC condition. More importantly, a clear relationship between estimated model parameters, including injection barrier, trap depth and trap density, with the dc breakdown strength in each layer has been reported in this study

    Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    Get PDF
    BACKGROUND: Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. METHODS: Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The AldefluorÂŽ assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. RESULTS: Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the AldefluorÂŽ assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. CONCLUSIONS: The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to cell states. Elucidating the function of the ALDH isozymes in lineage differentiation and pathogenesis may have significant implications for ovarian cancer pathophysiology

    ADIPOR1 is essential for vision and its RPE expression is lost in the Mfrp

    Get PDF
    The knockout (KO) of the adiponectin receptor 1 (AdipoR1) gene causes retinal degeneration. Here we report that ADIPOR1 protein is primarily found in the eye and brain with little expression in other tissues. Further analysis of AdipoR1 KO mice revealed that these animals exhibit early visual system abnormalities and are depleted of RHODOPSIN prior to pronounced photoreceptor death. A KO of AdipoR1 post-development either in photoreceptors or the retinal pigment epithelium (RPE) resulted in decreased expression of retinal proteins, establishing a role for ADIPOR1 in supporting vision in adulthood. Subsequent analysis of the Mfr

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Blood‐derived product therapies for SARS‐CoV‐2 infection and long COVID

    No full text
    Abstract Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is capable of large‐scale transmission and has caused the coronavirus disease 2019 (COVID‐19) pandemic. Patients with COVID‐19 may experience persistent long‐term health issues, known as long COVID. Both acute SARS‐CoV‐2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood‐derived products are important strategies to combat the serious damage caused by COVID‐19. Since the emergence of COVID‐19, various blood‐derived products that target or do not target SARS‐CoV‐2 have been investigated for therapeutic applications. SARS‐CoV‐2‐targeting blood‐derived products, including COVID‐19 convalescent plasma, COVID‐19 hyperimmune globulin, and recombinant anti‐SARS‐CoV‐2 neutralizing immunoglobulin G, are virus‐targeting and can provide immediate control of viral infection in the short term. Non‐SARS‐CoV‐2‐targeting blood‐derived products, including intravenous immunoglobulin and human serum albumin exhibit anti‐inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS‐CoV‐2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood‐derived product therapies for COVID‐19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment
    corecore