259 research outputs found

    China's success in FDI: Why South Africa can learn from it

    Get PDF
    Following economic reforms in 1978, the growth of Foreign Direct Investment (FDI) into China has been dramatic. The massive FDI inflows greatly benefited China's economy and contributed to its steady and rapid economic growth. Most FDI empirical studies use panel data as it solves the problem of data limitation, but it also produces 'average' effects for the results of the group of countries under study. Thus, individual countries in the group may generate different results when tested separately with the same model. This study uses an alternative approach that focuses on finding a Vector Error Correction Model with similar macroeconomic determinants of FDI for South Africa and for China. For both countries, larger market size and more advanced technology have a positive effect on FDI inflows, whereas higher labour cost affects FDI negatively. For the China model, infrastructure has a positive influence on its FDI inflows, whereas for the South African model worker strikes have a significant negative impact on FDI. Furthermore, we find remarkable similarities regarding the sectoral composition of FDI inflows in both countries, which further highlights the potential lessons that South Africa could learn from China regarding their highly successful FDI experience

    Full counting statistics of renormalized dynamics in open quantum transport system

    Full text link
    The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.Comment: 9 pages, 5 figure

    Super-Lubricious, Fullerene-like, Hydrogenated Carbon Films

    Get PDF
    Almost one-third of minimal energy is consumed via friction and wear process. Thus, to save energy using advanced lubrication materials is one of the main routes that tribologists are focused on. Recently, superlubricity is the most prominent way to face energy problems. Designing promising mechanical systems with ultra-low friction performance and establishing superlubricity regime is imperative not only to the most greatly save energy but also to reduce hazardous waste emissions into our environment. At the macroscale, hydrogenated diamond-like carbon (DLC) film with a supersmooth and fully hydrogen terminated surface is the most promising materials to realize superlubricity. However, the exact superlubricity of DLC film can only be observed under high vacuum or specific conditions and is not realized under ambient conditions for engineering applications. The latest breakthrough in macroscale superlubricity is made by introducing fullerene-like nano-structure and designing graphene nanoscroll formation, which also demonstrates the structure-superlubricity (coefficient of friction ~0.002) relationship. Thus, it is very interesting to design macroscale superlubricity by prompting the in situ formation of these structures at the friction interfaces. In this chapter, we will focus on fullerene-like hydrogenated carbon (FL-C:H) films and cover the growth methods, nanostructures, mechanic, friction properties and superlubricity mechanism

    Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays

    Get PDF
    This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods

    Direct TEM Observation of Vacancy-Mediated Heteroatom Incorporation into a Zeolite Framework: Towards Microscopic Design of Zeolite Catalysts

    Get PDF
    Incorporating hetero-metal-atom,e.g., titanium, into zeolite frameworks can enhance the catalytic activity and selectivity in oxidation reactions.However,the rational design of zeolites containing titanium at specificsites is difficult because the precise atomic structure during synthesis process remained unclear.Here, a titanosilicate with predictable titanium distribution was synthesized by mediating vacancies in a defective MSE-typezeolite precursor,based on a pre-designed synthetic route including modification of vacancies followed by titanium insertion,where electron microscopy(EM) plays a key role at each step resolving the atomic structure.Point defects including vacancies in the precursor and titanium incorporated into the vacancy-related positions have been directly observed. The results provide insights into the role of point defects in zeolites towards the rational synthesis of zeolites with desired microscopic arrangement of catalytically active sites

    A Switched Approach to Robust Stabilization of Multiple Coupled Networked Control Systems

    Get PDF
    This paper proposes a switched approach to robust stabilization of a collection of coupled networked controlled systems (NCSs) with node devices acting over a limited communication channel. We suppose that the state information of every subsystem is split into different packets and only one packet of the subsystem can be transmitted at a time. Multiple NCSs with norm-bounded parameter uncertainties and multiple transmissions are modeled as a periodic switched system in this paper. State feedback controllers can be constructed in terms of linear matrix inequalities. A numerical example is given to show that a collection of uncertain NCSs with the problem of limited communication can be effectively stabilized via the designed controller

    No-Regret Online Reinforcement Learning with Adversarial Losses and Transitions

    Full text link
    Existing online learning algorithms for adversarial Markov Decision Processes achieve O(T){O}(\sqrt{T}) regret after TT rounds of interactions even if the loss functions are chosen arbitrarily by an adversary, with the caveat that the transition function has to be fixed. This is because it has been shown that adversarial transition functions make no-regret learning impossible. Despite such impossibility results, in this work, we develop algorithms that can handle both adversarial losses and adversarial transitions, with regret increasing smoothly in the degree of maliciousness of the adversary. More concretely, we first propose an algorithm that enjoys O~(T+CP)\widetilde{{O}}(\sqrt{T} + C^{\textsf{P}}) regret where CPC^{\textsf{P}} measures how adversarial the transition functions are and can be at most O(T){O}(T). While this algorithm itself requires knowledge of CPC^{\textsf{P}}, we further develop a black-box reduction approach that removes this requirement. Moreover, we also show that further refinements of the algorithm not only maintains the same regret bound, but also simultaneously adapts to easier environments (where losses are generated in a certain stochastically constrained manner as in Jin et al. [2021]) and achieves O~(U+UCL+CP)\widetilde{{O}}(U + \sqrt{UC^{\textsf{L}}} + C^{\textsf{P}}) regret, where UU is some standard gap-dependent coefficient and CLC^{\textsf{L}} is the amount of corruption on losses.Comment: 66 page
    corecore