25 research outputs found

    Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice

    Get PDF
    Aging usually involves the progressive development of certain illnesses, including diabetes and obesity. Due to incapacity to form new white adipocytes, adipose expansion in aged mice primarily depends on adipocyte hypertrophy, which induces metabolic dysfunction. On the other hand, brown adipose tissue burns fatty acids, preventing ectopic lipid accumulation and metabolic diseases. However, the capacity of brown/beige adipogenesis declines inevitably during the aging process. Previously, we reported that DNA demethylation in the Prdm16 promoter is required for beige adipogenesis. DNA methylation is mediated by ten-eleven family proteins (TET) using alpha-ketoglutarate (AKG) as a cofactor. Here, we demonstrated that the circulatory AKG concentration was reduced in middle-aged mice (10-month-old) compared with young mice (2-month-old). Through AKG administration replenishing the AKG pool, aged mice were associated with the lower body weight gain and fat mass, and improved glucose tolerance after challenged with high-fat diet (HFD). These metabolic changes are accompanied by increased expression of brown adipose genes and proteins in inguinal adipose tissue. Cold-induced brown/beige adipogenesis was impeded in HFD mice, whereas AKG rescued the impairment of beige adipocyte functionality in middle-aged mice. Besides, AKG administration up-regulated Prdm16 expression, which was correlated with an increase of DNA demethylation in the Prdm16 promoter. In summary, AKG supplementation promotes beige adipogenesis and alleviates HFD-induced obesity in middle-aged mice, which is associated with enhanced DNA demethylation of the Prdm16 gene

    Thermodynamic analysis of hybrid ceramic bearings with metal inner rings

    No full text
    For the sake of exploring the thermodynamic characteristics of hybrid ceramic bearings with metal inner rings in the application process, we established the mathematical model of bearings with metal inner rings based on the thermodynamics of bearings. The heat of the bearings, inner and outer raceway, and the deformation of bearings were calculated by the thermodynamic model. We used the bearing life testing machine to test the bearing load and speed. The consequences indicate that the temperature stability time of a hybrid ceramic bearing with the metal inner ring is about 6 hours after loading, and its temperature is about 1–2◦C higher than that of a metal bearing. Under the condition of a certain speed, the stable temperature of bearing operation improves with the enlargement of the load. Under the condition of a certain load, the bearing temperature also improves with the enlargement of bearing speed. The overall temperature trend of the bearing outer ring is unanimous with the overall temperature value calculated by the model. The maximum error is between 2.2 and 2.4◦C. The thermodynamic analysis of hybrid bearings with metal inner rings is conducive to a better study of the effect of bearing material characteristics on bearing performance

    Study on the influence of grinding disc motion on the forming of silicon nitride ceramic balls

    No full text
    In order to improve the processing accuracy of silicon nitride ceramic balls and to investigate the mechanism of forming ceramic balls by flexible support grinding method, a new cone-type flexible support grinding method with controlled deflection motion of grinding disc is proposed. Based on the new grinding method, a simulation model is established to deeply analyze the influence of the deflection motion of the grinding disc on the grinding trajectory and force state of the silicon nitride ceramic balls. Orthogonal experiments were conducted on a new cone-type flexible support grinding platform built to further analyze the effect of grinding disc motion characteristics on ball formation. Simulation and experimental results show that under the flexible support grinding method, As the increases of grinding disc deflection angle, the standard deviation of ball trajectory uniformity decreased from 43.58 to 35.49, the maximum contact force increased to 4 times the initial value, the average ball diameter variation increased from 1.466 μm to 2.382 μm, and the batch diameter variation increased from 4.98 μm to 10.27 μm. The lower grinding disc deflection motion is beneficial to optimize the grinding trajectory, but increases the unevenness of the ball force, which is not conducive to improving the average ball diameter variation and batch diameter variation of silicon nitride ceramic balls. In the actual process, the angle of deflection of the grinding disc must be controlled to within 0.02°

    Venus’ light slab hinders its development of planetary-scale subduction

    Get PDF
    Terrestrial planet Venus has a similar size, mass, and bulk composition to Earth. Previous studies proposed that local plume-induced subduction existed on both early Earth and Venus, and this prototype subduction might initiate plate tectonics on Earth but not on Venus. In this study, we simulate the buoyancy of submerged slabs in a hypothesized 2-D thermo-metamorphic model. We analyze the thermal state of the slab, which is then used for calculating density in response to thermal and phase changes. The buoyancy of slab mantle lithosphere is primarily controlled by the temperatures and the buoyancy of slab crust is dominated by metamorphic phase changes. Difference in the eclogitization process contributes most to the slab buoyancy difference between Earth and Venus, which makes the subducted Venus’ slab consistently less dense than Earth’s. The greater chemical buoyancy on Venus, acting as a resistance to subduction, may have impeded the transition into self-sustained subduction and led to a different tectonic regime on Venus. This hypothesis may be further tested as more petrological data of Venus become available, which will further help to assess the impact of petro-tectonics on the planet’s habitability

    Thermal Dynamic Exploration of Full-Ceramic Ball Bearings under the Self-Lubrication Condition

    No full text
    A silicon nitride ceramic bearing has good self-lubricating characteristics. It still has a good operational status under the condition of a lack of oil. However, the temperature distribution of a silicon nitride ceramic bearing during its operation is unclear. To clarify the thermal distribution of a full-ceramic ball silicon nitride ceramic bearing under self-lubricating conditions, the changing trend of the rolling friction temperature between the rolling elements and channels with different accuracies is analyzed using the friction testing machine. The bearing heat generation model based on the silicon nitride material coefficient is established, and the life test machine measures the temperature of the bearing to verify the accuracy of the simulation model. The results show that the friction temperature between the ceramic ball and channel decreases with the increase in ceramic ball level. With an increase in the ceramic ball pressure and temperature, the friction temperature rises. Under self-lubrication, when the bearing bears a heavy load, the influence of the rotating speed on temperature rise tends to decrease. Under the condition of high speed, with the increase in load, the change range of temperature rise shows an upward trend. The important relationship between the bearing’s heat and bearing’s load and speed is revealed. It provides some theoretical guidance for the thermal analysis of a silicon nitride ceramic ball bearing under the self-lubricating condition to improve the service life and reliability of full-ceramic ball bearings

    Study on Distribution of Lubricating Oil Film in Contact Micro-Zone of Full Ceramic Ball Bearings and the Influence Mechanism on Service Performance

    No full text
    Compared with metal ball bearings, full ceramic ball bearings have more outstanding service performance under extreme working conditions. In order to reveal the lubrication mechanism and improve the operation performance and service life of full ceramic ball bearings, in this paper, the friction, vibration, and temperature rise characteristics of 6208 silicon nitride full ceramic deep groove ball bearing, under the condition of oil lubrication, are studied experimentally. Based on the test results, and through theoretical calculation and simulation analysis, the distribution of the lubricating oil film in bearing contact micro-zone under different working conditions was simulated. After that, the surface of contact micro-zone of full ceramic ball bearing was analyzed. It was found that there is an optimal oil supply for full ceramic ball bearing oil lubrication in service. Under the optimal oil supply lubrication, full film lubrication can be achieved, and the bearing exhibits the best characteristics of friction, vibration, and temperature rise. Compared with the load, the rotational speed of the bearing has a decisive influence on the optimal oil supply. When the rotational speed and load are constant, the minimum oil film thickness and oil film pressure in the contact area of the rolling body decrease with the increase of angle ψ from the minimum stress point of the rolling body. Under the action of high contact stress, thin oil film will be formed in the bearing outer ring raceway. In the field of full ceramic ball bearings, the research content of this paper is innovative. The research results of this paper have an important guiding significance for revealing the oil lubrication mechanism of full ceramic ball bearing and enriching its lubrication theory and methods

    The Recent Advances of Magnetic Nanoparticles in Medicine

    No full text
    With the progress of nanotechnology and molecular biology, nanoparticles have been widely studied and applied in biomedicine. Particularly, characterized by unique magnetic property, targeting, and biocompatibility, magnetic nanoparticles have become one of the research hotspots in the nanomedical field. Herein, we summarized the recent advances of magnetic nanoparticles in medicine, including the property, carrier function, MRI, and tumor magnetic inductive hyperthermia of magnetic nanoparticles

    The Possible Mechanisms of HSV-TK/Hyperthermia Combined with 131I-antiAFPMcAb-GCV Nanospheres to Treat Hepatoma

    No full text
    Our previous findings showed a good therapeutic effect of the combination of suicide gene HSV-TK, nuclide 131I, and magnetic fluid hyperthermia (MFH) on hepatoma by using magnetic nanoparticles as linkers, far better than any monotherapy involved, with no adverse effects. This combination therapy might be an eligible strategy to treat hepatic cancer. However, it is not clear how the combination regimen took the therapeutic effects. In the current study, to explore the possible mechanisms of radionuclide-gene therapy combined with MFH to treat hepatoma at tissue, cellular, and molecular levels and to provide theoretical and experimental data for its clinical application, we examined the apoptosis induction of the combination therapy and investigated the expression of the proteins related to apoptosis such as survivin, livin, bcl-2, p53, and nucleus protein Ki67 involved in cell proliferation, detected VEGF, and MVD involved in angiogenesis of tumor tissues and analyzed the pathologic changes after treatment. The results showed that the combination therapy significantly induced the hepatoma cell apoptosis. The expression of survivin, VEGF, bcl-2, p53, livin, Ki67, and VEGF proteins and microvascular density (MVD) were all decreased after treatment. The therapeutic mechanisms may be involved in the downregulation of Ki67 expression leading to tumor cell proliferation repression and inhibition of survivin, bcl-2, p53, and livin protein expression inducing tumor cell apoptosis, negatively regulating VEGF protein expression, and reducing vascular endothelial cells, which results in tumor angiogenesis inhibition and microvascular density decrease and tumor cell necrosis. These findings offer another basic data support and theoretical foundation for the clinical application of the combination therapy
    corecore