489 research outputs found
Fast Multi-Task SCCA Learning with Feature Selection for Multi-Modal Brain Imaging Genetics
Brain imaging genetics studies the genetic basis of brain structures and functions via integrating both genotypic data such as single nucleotide polymorphism (SNP) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise univariate analyses. MTL methods generally incorporate a few of QTs and are not designed for feature selection from a large number of QTs; while existing SCCA methods typically employ only one modality of QTs to study its association with SNPs. Both MTL and SCCA encounter computational challenges as the number of SNPs increases. In this paper, combining the merits of MTL and SCCA, we propose a novel multi-task SCCA (MTSCCA) learning framework to identify bi-multivariate associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by different imaging modalities. Using the G2,1-norm regularization, MTSCCA treats all SNPs in the same group together to enforce sparsity at the group level. The l2,1-norm penalty is used to jointly select features across multiple tasks for SNPs, and across multiple modalities for QTs. A fast optimization algorithm is proposed using the grouping information of SNPs. Compared with conventional SCCA methods, MTSCCA obtains improved performance regarding both correlation coefficients and canonical weights patterns. In addition, our method runs very fast and is easy-to-implement, and thus could provide a powerful tool for genome-wide brain-wide imaging genetic studies
Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
The abundant spatial and contextual information provided by the advanced remote sensing technology has facilitated subsequent automatic interpretation of the optical remote sensing images (RSIs). In this paper, a novel and effective geospatial object detection framework is proposed by combining the weakly supervised learning (WSL) and high-level feature learning. First, deep Boltzmann machine is adopted to infer the spatial and structural information encoded in the low-level and middle-level features to effectively describe objects in optical RSIs. Then, a novel WSL approach is presented to object detection where the training sets require only binary labels indicating whether an image contains the target object or not. Based on the learnt high-level features, it jointly integrates saliency, intraclass compactness, and interclass separability in a Bayesian framework to initialize a set of training examples from weakly labeled images and start iterative learning of the object detector. A novel evaluation criterion is also developed to detect model drift and cease the iterative learning. Comprehensive experiments on three optical RSI data sets have demonstrated the efficacy of the proposed approach in benchmarking with several state-of-the-art supervised-learning-based object detection approaches
Practical Deep Dispersed Watermarking with Synchronization and Fusion
Deep learning based blind watermarking works have gradually emerged and
achieved impressive performance. However, previous deep watermarking studies
mainly focus on fixed low-resolution images while paying less attention to
arbitrary resolution images, especially widespread high-resolution images
nowadays. Moreover, most works usually demonstrate robustness against typical
non-geometric attacks (\textit{e.g.}, JPEG compression) but ignore common
geometric attacks (\textit{e.g.}, Rotate) and more challenging combined
attacks. To overcome the above limitations, we propose a practical deep
\textbf{D}ispersed \textbf{W}atermarking with \textbf{S}ynchronization and
\textbf{F}usion, called \textbf{\proposed}. Specifically, given an
arbitrary-resolution cover image, we adopt a dispersed embedding scheme which
sparsely and randomly selects several fixed small-size cover blocks to embed a
consistent watermark message by a well-trained encoder. In the extraction
stage, we first design a watermark synchronization module to locate and rectify
the encoded blocks in the noised watermarked image. We then utilize a decoder
to obtain messages embedded in these blocks, and propose a message fusion
strategy based on similarity to make full use of the consistency among
messages, thus determining a reliable message. Extensive experiments conducted
on different datasets convincingly demonstrate the effectiveness of our
proposed {\proposed}. Compared with state-of-the-art approaches, our blind
watermarking can achieve better performance: averagely improve the bit accuracy
by 5.28\% and 5.93\% against single and combined attacks, respectively, and
show less file size increment and better visual quality. Our code is available
at https://github.com/bytedance/DWSF.Comment: Accpeted by ACM MM 202
Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
Land-use classification using remote sensing images covers a wide range of applications. With more detailed spatial and textural information provided in very high resolution (VHR) remote sensing images, a greater range of objects and spatial patterns can be observed than ever before. This offers us a new opportunity for advancing the performance of land-use classification. In this paper, we first introduce an effective midlevel visual elements-oriented land-use classification method based on “partlets,” which are a library of pretrained part detectors used for midlevel visual elements discovery. Taking advantage of midlevel visual elements rather than low-level image features, a partlets-based method represents images by computing their responses to a large number of part detectors. As the number of part detectors grows, a main obstacle to the broader application of this method is its computational cost. To address this problem, we next propose a novel framework to train coarse-to-fine shared intermediate representations, which are termed “sparselets,” from a large number of pretrained part detectors. This is achieved by building a single-hidden-layer autoencoder and a single-hidden-layer neural network with an L0-norm sparsity constraint, respectively. Comprehensive evaluations on a publicly available 21-class VHR land-use data set and comparisons with state-of-the-art approaches demonstrate the effectiveness and superiority of this paper
Background prior-based salient object detection via deep reconstruction residual
Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand designed features and their distinctiveness measured using local or global contrast. Although these approaches have shown effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learnt in an unsupervised and bottom up manner. Afterwards, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations on three benchmark datasets and comparisons with 9 state-of-the-art algorithms demonstrate the superiority of the proposed work
- …