16 research outputs found

    Modulation of hippocampal gamma oscillations by dopamine in heterozygous Reeler mice In vitro

    Get PDF
    The reelin haploinsufficient heterozygous reeler mouse (HRM), an animal model of schizophrenia, has altered mesolimbic dopaminergic pathways, shares similar neurochemical, and behavioral properties with the patients with schizophrenia. Dysfunctional neural circuitry with impaired gamma (γ) oscillation (30–80 Hz) has been implicated in abnormal cognition in patients with schizophrenia. However, the function of neural circuitry in terms of γ oscillation and its modulation by dopamine has not been reported in HRM. In this study, first, we recorded γ oscillations in CA3 from wide type (WT) mice and HRM hippocampal slices, and studied the effects of dopamine (DA) on γ oscillations. We found that there was no difference in γ power between WT mice and HRM and that dopamine increased γ power of WT mice but not HRM, suggesting that dopamine modulations of network oscillations in HRM are impaired. Second, we found that N-methyl-D-aspartate receptor (NMDAR) antagonist itself increased γ power and occluded DA-mediated enhancement of γ power in WT mice but partially restored DA modulation of γ oscillations in HRM. Third, inhibition of phosphoinositide 3-kinase (PI3K), a downstream molecule of NMDAR, increased γ power and blocked the effects of DA on γ oscillation in WT mice and had no significant effect on γ power but largely restored DA modulation of γ oscillations in HRM. Our results reveal that impaired DA function in HRM is associated with dysregulated NMDAR-PI3K signaling, a mechanism that may be relevant in the pathology of schizophrenia

    Cellular heterogeneity of pluripotent stem cell-derived cardiomyocyte grafts is mechanistically linked to treatable arrhythmias

    Full text link
    Preclinical data have confirmed that human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can remuscularize the injured or diseased heart, with several clinical trials now in planning or recruitment stages. However, because ventricular arrhythmias represent a complication following engraftment of intramyocardially injected PSC-CMs, it is necessary to provide treatment strategies to control or prevent engraftment arrhythmias (EAs). Here, we show in a porcine model of myocardial infarction and PSC-CM transplantation that EAs are mechanistically linked to cellular heterogeneity in the input PSC-CM and resultant graft. Specifically, we identify atrial and pacemaker-like cardiomyocytes as culprit arrhythmogenic subpopulations. Two unique surface marker signatures, signal regulatory protein α (SIRPA)+CD90−CD200+ and SIRPA+CD90−CD200−, identify arrhythmogenic and non-arrhythmogenic cardiomyocytes, respectively. Our data suggest that modifications to current PSC-CM-production and/or PSC-CM-selection protocols could potentially prevent EAs. We further show that pharmacologic and interventional anti-arrhythmic strategies can control and potentially abolish these arrhythmias

    Plasma polymerized nanoparticles are a safe platform for direct delivery of growth factor therapy to the injured heart

    Get PDF
    Introduction: Heart failure due to myocardial infarction is a progressive and debilitating condition, affecting millions worldwide. Novel treatment strategies are desperately needed to minimise cardiomyocyte damage after myocardial infarction and to promote repair and regeneration of the injured heart muscle. Plasma polymerized nanoparticles (PPN) are a new class of nanocarriers which allow for a facile, one-step functionalization with molecular cargo.Methods: Here, we conjugated platelet-derived growth factor AB (PDGF-AB) to PPN, engineering a stable nano-formulation, as demonstrated by optimal hydrodynamic parameters, including hydrodynamic size distribution, polydisperse index (PDI) and zeta potential, and further demonstrated safety and bioactivity in vitro and in vivo. We delivered PPN-PDGF-AB to human cardiac cells and directly to the injured rodent heart.Results: We found no evidence of cytotoxicity after delivery of PPN or PPN-PDGFAB to cardiomyocytes in vitro, as determined through viability and mitochondrial membrane potential assays. We then measured contractile amplitude of human stem cell derived cardiomyocytes and found no detrimental effect of PPN on cardiomyocyte contractility. We also confirmed that PDGF-AB remains functional when bound to PPN, with PDGF receptor alpha positive human coronary artery vascular smooth muscle cells and cardiac fibroblasts demonstrating migratory and phenotypic responses to PPN-PDGF-AB in the same manner as to unbound PDGF-AB. In our rodent model of PPN-PDGF-AB treatment after myocardial infarction, we found a modest improvement in cardiac function in PPN-PDGF-AB treated hearts compared to those treated with PPN, although this was not accompanied by changes in infarct scar size, scar composition, or border zone vessel density.Discussion: These results demonstrate safety and feasibility of the PPN platform for delivery of therapeutics directly to the myocardium. Future work will optimize PPN-PDGF-AB formulations for systemic delivery, including effective dosage and timing to enhance efficacy and bioavailability, and ultimately improve the therapeutic benefits of PDGF-AB in the treatment of heart failure cause by myocardial infarction

    Simvastatin Modulates Remodeling of Kv4.3 Expression in Rat Hypertrophied Cardiomyocytes

    No full text
    <p><b>Objectives:</b> Hypertrophy has been shown to be associated with arrhythmias which can be caused by abnormal remodeling of the Kv4-family of transient potassium channels. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have recently been shown to exert pleiotropic protective effects in cardiovascular diseases, including anti-arrhythmias. It is hypothesized that remodeling of Kv4.3 occurs in rat hypertrophied cardiomyocytes and is regulated by simvastatin.</p><p><b>Methods: </b>Male Sprague-Dawley rats and neonatal rat ventricular myocytes (NRVMs) underwent abdominal aortic banding (AAB) for 7 weeks and angiotensin II (AngII) treatment, respectively, to induce cardiac hypertrophy. Kv4.3 expression by NRVMs and myocardium (subepicardial and subendocardial) in the left ventricle was measured. The transient outward potassium current (<i>I</i><sub>to</sub>) of NRVMs was recorded using a whole-cell patch-clamp method.</p><p><b>Results:</b> Expression of the Kv4.3 transcript and protein was significantly reduced in myocardium (subepicardial and subendocardial) in the left ventricle and in NRVMs. Simvastatin partially prevented the reduction of Kv4.3 expression in NRVMs and subepicardial myocardium but not in the subendocardial myocardium. Hypertrophied NRVMs exhibited a significant reduction in the <i>I</i><sub>to</sub> current and this effect was partially reversed by simvastatin.</p><p><b>Conclusions:</b> Simvastatin alleviated the reduction of Kv4.3 expression, <i>I</i><sub>to</sub> currents in hypertrophied NRVMs and alleviated the reduced Kv4.3 expression in subepicardial myocardium from the hypertrophied left ventricle. It can be speculated that among the pleiotropic effects of simvastatin, the anti-arrhythmia effect is partly mediated by its effect on Kv4.3.</p

    Development of a sheep model of atrioventricular block for the application of novel therapies.

    No full text
    INTRODUCTION:Sheep have been adopted as a pre-clinical large animal for scientific research as they are good models of cardiac anatomy and physiology, and allow for investigation of pathophysiological processes which occur in the large mammalian heart. There is, however, no defined model of atrioventricular block in sheep to allow for pre-clinical assessment of new cardiac treatment options. We therefore aimed to develop an adult sheep model of atrioventricular block with the focus on future novel applications. METHODS AND RESULTS:We utilized six sheep to undergo two procedures each. The first procedure involved implantation of a single chamber pacemaker into the right ventricular apex, for baseline assessment over four weeks. The second procedure involved creating atrioventricular block by radiofrequency ablation of the His bundle, before holding for a further four weeks. Interrogation of pacemakers and electrocardiograms determined the persistence of atrioventricular block during the follow up period. Pacemakers were inserted, and atrioventricular block created in 6 animals using a conventional approach. One animal died following ablation of the His bundle, due to procedural complications. Four unablated sheep were assessed for baseline data over four weeks and showed 5.53 ± 1.28% pacing reliance. Five sheep were assessed over four weeks following His bundle ablation and showed continuous (98.89 ± 0.81%) ventricular pacing attributable to persistent atrioventricular block, with no major complications. CONCLUSION:We have successfully developed, characterized and validated a large animal model of atrioventricular block that is stable and technically feasible in adult sheep. This model will allow for the advancement of novel therapies, including the development of cell and gene-based therapies

    Quantitative spectral assessment of intracardiac electrogram characteristics associated with post infarct fibrosis and ventricular tachycardia.

    No full text
    BACKGROUND:Post-myocardial infarction (MI) remodeling contributes to increased electrophysiological and structural heterogeneity and arrhythmogenesis. Utilising the post-infarct ovine model our aim was to determine unipolar electrogram frequency characteristics consequent to this remodeling and the development of Ventricular Tachycardia (VT). METHODS AND RESULTS:Mapping studies were performed on 14 sheep at >1 month post-MI induction. Sheep were divided into VT inducible (n = 7) and non-inducible (n = 7) groups. Multielectrode needles (n = 20) were deployed within and surrounding ventricular scar for electrophysiological assessment of electrogram amplitude and width. Spectral analysis of electrograms was undertaken using wavelet and fast fourier transformations (WFFT) to calculate root mean square (RMS) power intervals spanning 0-300Hz in 20Hz intervals. Quantitative assessment between electrophysiological and histological parameters including collagen density, and structural organization of the myocardium was performed. Increasing myocardial scar density resulted in attenuation of electrogram amplitude and RMS values. (all p<0.01). Between groups there were no differences in electrogram amplitude (p = 0.37), however WFFT analysis revealed significantly higher RMS values in the VT group (p<0.05) in association with high frequency fractional components of the electrogram. As scar density increased, greater between-group differences in RMS were observed spanning this high frequency (200-280Hz) spectrum and which were proportionally dependent on the degree of structural disorganisation of the myocardium (p<0.001) and number of extrastimuli required to induce VT (p<0.05). CONCLUSION:High frequency unipolar electrogram spectral characteristics were quantitatively co-influenced by the presence of fibrosis and degree of myocardial structural dissorganisation and were associated with the propensity for development of VT

    Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    Get PDF
    Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression
    corecore