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Q1
The reelin haploinsufficient heterozygous reeler mice (HRM), an animal model of
schizophrenia, have altered mesolimbic dopaminergic pathways and share similar
neurochemical and behavioral properties with patients with schizophrenia. Dysfunctional
neural circuitry with impaired gamma (γ) oscillation (30–80 Hz) has been implicated
in abnormal cognition in patients with schizophrenia. However, the function of neural
circuitry in terms of γ oscillation and its modulation by dopamine (DA) has not been
reported in HRM. In this study, first, we recorded γ oscillations in CA3 from wild-
type mice (WTM) and HRM hippocampal slices, and we studied the effects of DA
on γ oscillations. We found that there was no difference in γ power between WTM
and HRM and that DA increased γ power of WTM but not HRM, suggesting that
DA modulations of network oscillations in HRM are impaired. Second, we found that
N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 itself increased γ power
and occluded DA-mediated enhancement of γ power in WTM but partially restored DA
modulation of γ oscillations in HRM. Third, inhibition of phosphatidylinositol 3-kinase Q10

(PI3K), a downstream molecule of NMDAR, increased γ power and blocked the effects
of DA on γ oscillation in WTM and had no significant effect on γ power but largely
restored DA modulation of γ oscillations in HRM. Our results reveal that impaired DA
function in HRM is associated with dysregulated NMDAR–PI3K signaling, a mechanism
that may be relevant in the pathology of schizophrenia.

Keywords: dopamine, γ oscillation, hippocampus, NMDAR, PI3 kinase, reelin

INTRODUCTION

Reelin, a glycoprotein of the extracellular matrix, controls cell migration and layering in the
developing brain, promotes the formation of synaptic circuits, and regulates synaptic transmission
and plasticity in the postnatal and adult brain (Campo et al., 2009; Hwa and Gabriella, 2016).
During development, reelin is expressed by the Cajal–Retzius cells in the hippocampus and cortex
and granule cells in the cerebellum, whereas in the adult brain, reelin is secreted by GABAergic
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interneurons in the cortex and hippocampus (Ogawa et al., 1995;
Knuesel, 2010; Brosda et al., 2011; Yuki et al., 2015).

The reelin gene is a susceptibility factor for early-onset
psychiatric disorders, such as schizophrenia and autism. The
heterozygous reeler mice (HRM) have a single reelin allele
deficiency (Tueting et al., 2008). Similar to the brain of patients
with schizophrenia, that of HRM exhibits a marked reduction
in reelin, glutamic acid decarboxylase 67, dendritic spines, and
synaptic function in the cortex and hippocampus (Tueting et al.,
1999, 2006; Costa et al., 2001; Liu et al., 2001; Nullmeier
et al., 2011), and abnormal behaviors, including impaired visual
attention (Brigman et al., 2006), increased motor impulse
(Ognibene et al., 2007), and persistent behavior (Macrì et al.,
2010). Interestingly, reelin supplementation restored sensory
motor gating and synaptic plasticity and reduced association
learning deficits in HRM (Rogers et al., 2013) and schizophrenia-
like symptoms (Ishii et al., 2015).

The hippocampal CA3 region plays a specific role in
memory processes (Cherubini and Miles, 2015) and attention
(Vinogradova, 2001; Bygrave et al., 2019) and controls
dopamine (DA) release by forming a functional circuit in
the ventral tegmental area (Luo et al., 2011). Extensive recurrent
axon collaterals of CA3 pyramidal neurons connected with
neighboring neurons, including GABAergic interneurons,
compose a local circuit, and the interaction of pyramidal neurons
and interneurons within the circuit generates synchronized
activity, such as gamma (γ) frequency oscillations (30–80 Hz)
(Traub and Wong, 1982; Bartos et al., 2007). γ oscillations
are able to synchronize local, inter-region, or long-range
neuronal activity and to promote information exchanges
between neurons (Colgin, 2011; Fries, 2015) and are associated
with higher brain function, such as attention, perceptual
binding, learning, and memory (Womelsdorf and Fries, 2007;
Buzsaki and Wang, 2012).

Schizophrenia has been suggested to be caused by the
failure of integrating local and distributed neural circuits
(Andreasen, 2000; Lee et al., 2003; Gallinat et al., 2004; Spencer,
2011; Jadi et al., 2016). In fact, studies have found that
abnormal γ oscillations are associated with multiple symptoms
of schizophrenia, such as hallucinations and delusion (Lee et al.,
2003; Spencer et al., 2004). Schizophrenia is known to be
associated with altered DA level (Winterer and Weinberger, 2004;
Toda and Abi-Dargham, 2007), which influences information
processes underlying cognitive process and may contribute to
abnormal γ oscillations observed in patients with schizophrenia.

As an animal model of schizophrenia, HRMQ11 shows abnormal
dopaminergic function, including reduced DA D1 and D2
receptors (D1R and D2R) in the striatum, reduced D1R- and
D2R-mediated locomotor response (Matsuzaki et al., 2007), and
increased expression of D2R in the striatum (Varela et al.,
2015); and it also shows altered dopaminergic fiber densities
in different brain areas, such as increase in the densities of
tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the
hippocampus but decrease TH-IR neurons in the shell of the
nucleus accumbens (Nullmeier et al., 2014). DA modulates fast
network oscillations in the γ frequency band of rat hippocampus
(Andersson et al., 2012) and beta frequency band of the mouse

anterior cingulate cortex (Steullet et al., 2014); however, little is
known about DA modulation of network oscillations in HRM.

Dopamine modulation of γ oscillations in rat
hippocampus is involved in N-methyl-D-aspartate receptor
(NMDAR)-dependent mechanism (Andersson et al., 2012).
Methamphetamine, a psychostimulant, known to induce a
strong DA release, enhances γ oscillations recorded in rat
hippocampal slices also involved in NMDAR activation (Li et al.,
2019). Studies have demonstrated that NMDAR is dysfunctional
in schizophrenia. The cortical hyperexcitability and reduced
function of NMDAR in parvalbumin-expressing inhibitory
interneurons in schizophrenia are associated with increased γ

activity (Spencer, 2011). A single dose of an application of the
NMDAR antagonist MK-801 induces psychotic symptoms in
humans and schizophrenia-like phenotype in animals, increases
peak power, and reduces peak frequency of γ oscillations (Carlen
et al., 2012; Lemercier et al., 2017).

Reelin increases NMDAR-dependent synaptic transmission
and plasticity in the postnatal hippocampus (Qiu et al., 2006).
Reelin deficiency causes increased expression of NR2A and NR2B
of NMDAR subunits in the hippocampus from HRM (Isosaka
et al., 2006). Blocking reelin secretion rapidly changes the subunit
composition of NMDAR to a predominance of NR2B-containing
NMDAR in cultured hippocampal neurons (Campo et al., 2009).
The altered expression of NMDAR subunits may contribute to
the modulation of network oscillations of HRM.

By binding to apolipoprotein E receptor 2 and very-low-
density lipoprotein receptor (ApoER2/VLDLR), reelin activates
different signaling cascades, one of which is phosphatidylinositol
3-kinase (PI3K) signaling pathway, and increases synaptic
transmission by enhancing PI3K-dependent postsynaptic
AMPAR insertion (Qiu et al., 2006; Ishii et al., 2016). PI3K is one
of the downstream molecules in NMDAR activation, in which
calcium influx through the NR2B subunit of NMDAR leads to the
activation of PI3K (Brennan-Minnella et al., 2013). A previous
study shows that nicotinic modulation of hippocampal γ

oscillations involves PI3K activation (Wang et al., 2017). These
studies indicate that PI3K may be involved in the modulation of
γ oscillations in HRM.

In this study, we investigated γ oscillation and its modulation
by DA in HRM using extracellular field potential recording to
determine whether there are altered dopaminergic modulations
of γ oscillation in HRM and the possible mechanisms
associated with it.

MATERIALS AND METHODS

Experimental Animals
Wild-type (WT) mice (c57BL/6N) and HRM (reelin+/−), 3-
to 6-month-old male and female mice, were purchased from
Model Animal Research Center of Nanjing University. WT
animals used in this study are littermates of HRM. Mice were
kept in standard housing conditions, with normal chow and
water ad libitum, under a normal 6 AM light–6 PM dark cycle.
The animals were anesthetized by intraperitoneal injection of
Sagatal (pentobarbital sodium, 100 mg kg−1, Rhône Mérieux
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Ltd., Harlow, United Kingdom). When all pedal reflexes were
abolished, the animals were perfused intracardially with chilled
(4◦C), oxygenated artificial cerebrospinal fluid (ACSF), in which
sodium chloride had been replaced by iso-osmotic sucrose. This
sucrose-ACSF contained (in mM) the following: 225 sucrose, 3
KCl, 1.25 NaH2PO4, 24 NaHCO3, 6 MgSO4, 0.5 CaCl2, and 10
glucose (pH 7.4). Horizontal slices (350 µm) of mouse brain
containing the ventral hippocampus were cut at 4◦C in sucrose-
ACSF, using a Leica VT1000S vibratome (Leica Microsystems
UK, Milton Keynes, United Kingdom), and stored at room
temperature at the interface between recording of ACSF and
humidified carbogen (95% O2–5% CO2) until these transferred to
the recording chamber. The recorded ACSF contained (in mM)
the following: 126 NaCl, 3 KCl, 1.25 NaH2PO4, 24 NaHCO3, 2
MgSO4, 2 CaCl2, and 10 glucose (pH 7.4).

Pharmacological Agents and Reagents
Carbachol; DA hydrochloride; the non-competitive
NMDAR antagonist, (5S,10R)-(+)-5-methyl-10,11-dihydro-
5H-dibenzo[a,d]cyclohepten-5,10-imine or dizocilpine
hydrogen maleate (MK-801); and the PI3K inhibitor,
11-(acetyloxy)-1S,6bR,7,8,9aS,10,11R,11bR-octahydro-
1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3,2-
de]indeno[4,5-h]-2-benzopyran-3,6,9-trione (wortmannin),
were purchased from Tocris Cookson Ltd. (Bristol,
United Kingdom). All other drugs and ACSF salts were
purchased from Sigma-Aldrich (Poole, United Kingdom). Stock
solutions, at thousand times the final concentration, were
made in water or DMSO and stored in individual aliquots at
−20◦C. The final solutions were freshly prepared on the day
of the experiment.

Electrophysiological Recording, Data
Acquisition, and Statistical Analysis
The hippocampal slices were maintained at a temperature of
32◦C at the interface between the ACSF and warm humidified
carbogen and allowed to equilibrate in this medium for 1 h
prior to recording. Extracellular field potentials were recorded
from the stratum pyramidale of Cornu ammonis 3c (CA3c) of
the hippocampus, using glass microelectrodes containing ACSF
(resistance, 2–5 M�). Field potentials were amplified using
NeuroLog NL106 AC/DC amplifiers (Digitimer Ltd., Welwyn
Garden City, United Kingdom) and band-pass filtered between
0.5 and 500 Hz using NeuroLog NL125 filters (Digitimer
Ltd., Welwyn Garden City, United Kingdom). Electromagnetic
interference from the main supply was eliminated from the
recordings with the use of HumBug 50-Hz noise eliminators
(Digitimer Ltd., Welwyn Garden City, United Kingdom). The
recordings were digitized at a sample rate of 2 kHz using
a CED 1401-plus ADC board (Cambridge Electronic Design,
Cambridge, United Kingdom).

Data were analyzed offline using the Spike2 software
(Cambridge Electronic Design). Power spectra were generated
to provide a quantitative measure of the frequency components.
Power spectra were constructed for 60-s epochs using a fast
Fourier transform algorithm.

It has been widely accepted that in vitro γ oscillations ranged
from 20 to 80 Hz, because the recorded γ oscillations in
brain slices are temperature dependent and the slice recordings
performed mostly at 32◦C rather than 37◦C. There is a linear
relationship between peak frequency of network oscillations and
temperature, in which an increase of 1◦C in temperature of brain
slices corresponds to an increase of 2.3± 0.4 Hz in the oscillation
frequency (Dickinson et al., 2003; Lu et al., 2012).

The area under the curve between 20 and 60 Hz was used
to quantify the γ power. Autocorrelograms were calculated in
Spike2 using a 500-ms lag from the same local field potential trace
used for γ power calculation. The decay time constant (tau) of
the autocorrelation peaks is a measure of the regularity of the
oscillation and generated by fitting the autocorrelation peaks with
an exponential function: Y = exp(−a ∗ X).

Statistical Analysis
All statistical analyses were performed using IBM SPSS Statistics
22 software (IBM, Armonk, NY, United States). The Shapiro–
Wilk test was used in testing the normality of the data. Parametric
data were expressed as mean ± standard error of the mean.
The paired and unpaired Student’s t-tests were used to compare
two groups of parametric data. One-way analysis of variance
(ANOVA) and repeated-measures (RM) ANOVA were used to
compare three or more group means. Non-parametric data were
expressed as median ± interquartile range. The Wilcoxon rank-
sum and signed-rank tests were used to compare the two groups
of non-parametric data. One-way and RM ANOVAs on ranks
were used for three or more group comparisons. The parametric
two-way ANOVA was used to analyze experimental data derived
from two-factor designs with or without RM. The two-way
ANOVA on ranks was used to analyze non-parametric data.
A P-value < 0.05 was considered statistically significant.

RESULTS

Gamma Oscillations Were Intact in
Heterozygous Reeler Mice Compared
With Wild-Type Mice
To induce stable γ oscillations in the CA3 area of mouse
hippocampal slices, the cholinergic agonist carbachol at 10 µM,
half of the concentration used in γ induction in rat hippocampal
slices (Fisahn et al., 1998), has been applied in bath perfusion. The
γ oscillations were induced after 5–10 min of an application of
carbachol in hippocampal slices, gradually increased, and reached
the steady state in approximately 1–2 h. Sample traces of field
potentials of baseline (no carbachol) and carbachol-induced γ

oscillations are presented in Figures 1A1,A2. In the comparison
between WTM and HRM, there was no significant difference
in γ power [WTM, 526.97 (247.21, 1,140.19) µV2, n = 45
slices from 22 mice, vs. HRM, 646.30 (239.25, 1,374.71) µV2,
n = 37 slices from 19 mice, Mann–Whitney U-statistic = 744,
T = 1,513.00, P = 0.749, Figure 1D] and peak frequency of
oscillations [WTM, 24.3 ± 0.55 Hz; HRM, 24.9 ± 1.4 Hz;
t(28) = 0.373; P = 0.712; Figure 1E]. Carbachol-induced γ
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FIGURE 1 | γQ5 power

Q6

in hippocampal CA3 region in wild-type mice (WTM) and heterozygous reeler mice (HRM). (A1,A2) The original curve of 1-s field potential
induced by carbachol (CCh) recorded in the hippocampal CA3 region in WTM (A1) and HRM (A2) hippocampal slices. (B1,B2) The Q12power spectrum of field potential
induced by CCh from WTM (B1) and HRM (B2) hippocampal slices. (C1,C2) Autocorrelograms of the recordings in A1 and A2 show the oscillation regularity of
CCh-induced oscillations from WTM (C1) and HRM (C2). (D) The bar graph shows the values of γ power of CCh-induced oscillations in WTM and HRM. (E) The
peak frequency of CCh-induced oscillations in WTM and HRM.

oscillations were regular in both WTM and HRM, reflected by the
similar decay time constants generated by fitting autocorrelation
curves with an exponential function [116.6 ± 13.2 ms for
WTM vs. 129.7 ± 10.8 ms for HRM, t(12) = 0.726, P = 0.482,
Figures 1C1,C2].

Dopamine Increased Gamma Power in
Wild-Type Mice but Not in Heterozygous
Reeler Mice
Defective reelin signaling influences the mesolimbic
dopaminergic pathways (Pujadas et al., 2014). Thus, we
tested whether DA modulation of γ oscillations was altered in
HRM. After stable γ oscillations were induced by carbachol in
hippocampal CA3 for at least 30 min, 20 µM of DA was applied.
In WTM, DA increased the γ power by 53.8 ± 11.5% of the
control [CCh + DA, 1,095.24 (586.52, 3,932.55) vs. CCh, 650.83

(392.70, 2,750.91) µV2, Z-statistic = 3.233, n = 14 slices from six
mice, P < 0.001, Wilcoxon signed-rank test, Figures 2A1,B1,D].
However, DA had no effect on γ power in HRM [CCh + DA,
703.43 (214.68, 1,369.28) vs. CCh, 727.58 (387.55, 1,223.66) µV2,
Z-statistic = −1.363, n = 13 slices from five mice, P = 0.191,
Wilcoxon signed-rank test, Figures 2A2,B2,D]. There was
a significant difference in DA response between WTM and
HRM [t(25) = 4.626, P = 0.0001, t-test, Figure 2E]. A two-way
non-parametric ANOVA for γ powers revealed a significant
main effect of genotype (F(1,25) = 25.559, P < 0.0001) and
a significant main effect of 20 µM of DA (F(1,25) = 5.279,
P = 0.026). Moreover, there was a significant interaction
effect between genotype and 20 µM of DA (F(1,25) = 25.559,
P < 0.0001). These results indicate that DA increased γ power in
WTM but not in HRM.

Dopamine had no effect on peak frequency in WTM
[CCh+DA, 24.9± 1.3 Hz vs. CCh, 24.7± 1.9 Hz; t(7) =−0.287,
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FIGURE 2 | Effect of dopamine (DA) on γ oscillations in slices of hippocampal CA3 from wild-type mice (WTM) and heterozygous reeler mice (HRM). The original
curve of 1-s field potential before and after application of DA (20 µM) recorded in slices of hippocampal CA3 region from WTM (A1) and HRM (A2). (B1,B2) The
power spectrum of field potential before and after application of DA (20 µM) from WTM (B1) and HRM (B2) hippocampal slices. (C1,C2) Autocorrelograms of the
recording in A1 and A2 show the effects of DA on oscillation regularity from WTM (C1) and HRM (C2). (D) The bar graph shows the effects of carbachol (CCh) and
CCh + DA on γ power in WTM and HRM (***P < 0.001). (E) The bar graph shows the effects of DA (CCh + DA) on normalized γ power (percentage change over
control) in WTM and HRM (***P < 0.001). (F) The bar graph shows peak frequency of the oscillatory activity in WTM and HRM (*P < 0.05).

P = 0.783, paired t-test] but slightly increased peak frequency
in HRM [CCh + DA, 27.8 ± 1.5 Hz vs. CCh, 25.5 ± 1.4 Hz,
t(7) =−2.600, P = 0.035, paired t-test, Figure 2F]. The regularity
of γ oscillations was not altered by DA in both WTM and HRM,
as the time constants are similar before and after the application
of DA in either WTM [CCh, 116.6 ± 13.2 ms vs. CCh + DA,
129.1 ± 26.7 ms, t(7) = 0.544, P = 0.603, paired t-test] or
HRM [CCh, 129.7 ± 15.6 ms vs. CCh + DA, 103.0 ± 8.1 ms,
t(5) =−1.768, P = 0.137, paired t-test].

Previous studies indicate that a high DA concentration
(200 µM) actually inhibited CCh-induced γ oscillations in rat
hippocampus (Weiss et al., 2003). Thus, we tested the effects of
DA on γ oscillations at such a high concentration in both WTM
and HRM. Our results show that DA significantly enhanced γ

power [1,431.84 ± 408.54 µV2 vs. CCh, 911.55 ± 27.07 µV2,
t(5) = −3.235, P = 0.023] without affecting peak frequency
[24.47± 1.22 Hz vs. CCh, 25.3± 0.78 Hz, t(5) = 1.398, P = 0.221]
in WTM and had no significant effect on either γ power [910.69
(574.66, 1,067.17) µV2 vs. CCh, 892.46 (514.53, 1,005.38) µV2,

Z-statistic = 1.859, P = 0.078, Wilcoxon signed-rank test] or
peak frequency [24.41 ± 1.26 Hz vs. CCh, 24.07 ± 137 Hz,
t(6) = −0.67, P = 0.518] in HRM. A two-way non-parametric
ANOVA for γ powers revealed a significant main effect of
genotype (F(1,38) = 33.749, P < 0.0001) and no significant main
effect of DA concentrations (F(1,38) = 1.925, P = 0.174). There
was no significant interaction effect between genotype and DA
concentrations (F(1,38) = 0.896, P = 0.350).

MK-801 Increased Gamma Power and
Occluded the Effect of Dopamine on
Gamma Power in Wild-Type Mice
Because NMDAR antagonists can restore dendritic spine density
and synaptic plasticity in the early stages in HRM (Niu et al.,
2004), we examined the effect of NMDAR antagonist on γ

oscillations in WTM. Perfusion of hippocampal slices of WTM
with MK-801 (20 µM) significantly increased γ power by
54.5 ± 10.9% of control [CCh + MK-801, 737.23 (178.1,
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1,756.03) µV2 vs. CCh, 459.55 (143.27, 971.16) µV2, q = 4.648,
P < 0.05, RM ANOVA on ranks, followed by Tukey’s test,
Figures 3A,B,E]. A further application of DA (20 µM) did
not significantly change the γ power [CCh + MK-801 + DA,
685.56 (218.2, 1,666.23) µV2 vs. CCh + MK-801, 737.23 (178.1,
1,756.03) µV2, q = 1.549, P > 0.05, RM ANOVA on ranks,
followed by Tukey’s test, Figures 3A,B,E], suggesting that MK-
801 occluded the effect of DA on γ power in WTM. The effect
of MK-801 + DA on γ power was not different from that of DA
alone [t(27) = 0.758, P = 0.455, t-test], and the net increase of γ

power caused by DA after deducting the effect of MK-801 was
significantly smaller than that of DA alone in WTM [8.9 ± 5.1%

vs. DA, 53.8 ± 11.9%, t(27) = −3.535, P = 0.001, t-test]. Neither
MK-801 nor MK-801+DA had any effect on the peak frequency
in WTM (Figure 3F).

MK-801 Caused a Small Increase in
Gamma Power and Restored
Dopamine-Mediated Enhancement of
Gamma in Heterozygous Reeler Mice
Perfusion of hippocampal slices of HRM with MK-801 (20 µM)
caused a 24.6 ± 11.3% change in the γ power without statistical
significance [CCh + MK-801, 780.23 (607.33, 2,037.99) µV2

FIGURE 3 | Effect of MK-801 on γ oscillations and dopamine (DA)-mediated γ oscillations in hippocampal CA3 of wild-type mice (WTM) and heterozygous reeler
mice (HRM). (A,C) The original curves of 1-s field potentials after applications of carbachol (CCh), MK-801, and DA recorded in hippocampal CA3 region in WTM (A)
and HRM (C). (B,D) The power spectra of field potentials after application of CCh, MK-801, and MK-801 + DA in WTM (B) and HRM (D). (E) The bar graph shows
the effects of CCh, MK-801, and Mk-801 + DA on γ power in WTM and HRM (*P < 0.05, **P < 0.01). (F) The bar graph shows the effects of CCh, MK-801, and
Mk-801 + DA on the peak frequency of oscillatory activity recorded in CA3 region of hippocampal slices in WTM and HRM (*P < 0.05).
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vs. CCh, 646.30 (327.35, 1,650.56) µV2, q = 3.000, P > 0.05,
RM ANOVA on ranks, followed by Tukey’s test, Figures 3C–
E]. A two-way non-parametric ANOVA for γ powers revealed
a significant interaction effect between genotype and MK-801
(F(1,22) = 4.618, P = 0.037). A further application of DA (20 µM)
caused an additional 21.3 ± 3.8% increase (over MK-801) or a
total increase of 50.4 ± 13.3% (over CCh) on γ power [1,065.32
(726.59, 2,317.82) µV2 vs. CCh, 646.30 (327.35, 1,650.56) µV2,
q = 6.000, P < 0.05, RM ANOVA on ranks, followed by Tukey’s
test, Figures 3C–E]. Compared with DA alone in HRM, MK-
801 + DA caused a significant increase on γ power in HRM
[50.4 ± 13.3% vs. DA, −8.6 ± 6.3%, t(21) = 2.930, P = 0.008,
t-test], and such an increase was comparable with that of DA
in WTM (DA, 53.8 ± 11.9%). The net increase of γ power
caused by DA after deducting the effect of MK-801 was also
significantly larger than that of DA alone in HRM [21.3 ± 3.8%
vs. DA,−8.6± 6.3%, t(20) = 3.64, P = 0.002, t-test]. These results
suggest that MK-801 restored partial sensitivity of γ power to
DA in HRM despite the fact that the effect of MK-801 on γ

power in HRM is significantly less than that of MK-801 in WTM
(HRM, 24.6 ± 11.3% vs. WTM, 54.5 ± 10.9%, Mann–Whitney
U-test = 101.000, T = 79, P = 0.049, Mann–Whitney rank-
sum test).

Interestingly, neither MK-801 alone nor MK-801 + DA had
any effect on peak frequency of oscillations in WTM (CCh+MK-
801, 23.4 ± 1.6 Hz vs. CCh, 24.3 ± 1.0 Hz or vs. CCh + MK-
801 + DA, 23.6 ± 2.2 Hz, F(2,5) = 0.333, P = 0.726, RM
ANOVA, Figure 3F). In HRM, MK-801 alone had no effect on
peak frequency of oscillations (CCh + MK-801, 25.2 ± 3.5 Hz
vs. CCh, 24.6 ± 3.2 Hz) and blocked the increasing effect of
DA on peak frequency and actually reduced peak frequency to
20.9 ± 2.6 Hz (CCh + MK-801 + DA) from 25.2 ± 3.5 Hz
(CCh + MK-801) (RM ANOVA, F(2,4) = 5.481, P = 0.032,
followed by the Holm–Sidak method). These results suggest that
NMDAR antagonist reversed the effect of DA on oscillatory peak
frequency in HRM.

Wortmannin Increased Gamma Power
and Largely Blocked
Dopamine-Mediated Increase in Gamma
Power in Wild-Type Mice
Previous studies indicate that reelin acts on its receptor
and activates the PI3K–Akt–mammalian target of rapamycin
(mTOR) pathway (Hwa and Gabriella, 2016). Therefore, we
examined the effect of wortmannin, a potent and selective
inhibitor of PI3K, at a physiological dose (Wang et al.,
2017) on γ oscillations of rat hippocampal slices from WTM
and HRM. When wortmannin was applied to hippocampal
slices, γ power was significantly increased by 39 ± 12%
in WTM (CCh + Wort, 973.39 ± 252.78 µV2 vs. CCh,
715.89 ± 175.34 µV2, F(2,9) = 9.908, P = 0.001, RM ANOVA,
Figures 4A,B,E), and a further application of DA (20 µM)
caused an additional 23 ± 7% increase in γ power, but such
an increase did not reach statistical significance compared with
that in wortmannin (1,150.03 ± 273.81 µV2 vs. CCh + Wort,
T = 1.801, P = 0.09, RM ANOVA, followed by the Holm–Sidak

method, Figures 4A,B,E). These results indicate that wortmannin
largely blocked DA-mediated enhancement of γ power in WTM.
Neither wortmannin nor wortmannin + DA had any effect on
peak frequency of γ oscillations in WTM (Figure 4F).

Wortmannin Restored Dopamine
Response of Gamma Power in
Heterozygous Reeler Mice
When applied to hippocampal slices from HRM, wortmannin
(200 nM) increased γ power by 20 ± 7.5% without statistical
significance [716.87 (426.0, 1,829.91) µV2 vs. CCh, 673.45
(269.47, 1,605.95) µV2, q = 2.53, P > 0.05, Friedman
RM ANOVA on ranks, followed by post hoc Tukey’s test,
Figures 4C,D,E]. A further application of DA (20 µM) caused
an additional 46 ± 13% increase in γ power [1,022.7 (784.16,
2,150.97) µV2 vs. wortmannin, q = 3.479, P < 0.05; vs.
CCh, q = 6.008, P < 0.05, Friedman RM ANOVA on ranks
(Friedman statistic = 18.20, P < 0.001), followed by post hoc
Tukey’s test, Figures 4C,D,E]. A two-way non-parametric
ANOVA for γ powers revealed no significant interaction effect
between genotype and wortmannin (F(1,18) = 0.572, P = 0.454)
and no significant interaction effect between genotype and
Wort + DA (F(1,18) = 0.396, P = 0.533). With the effect
of DA alone on γ power (−8.6 ± 6.8%) in HRM, such an
increase of 46 ± 13% in γ power is of statistical significance
[t(21) = −4.109, P = 0.001, t-test]. DA mediated an increase
in γ power in the presence of wortmannin in HRM at a
level that is comparable with that of DA effect on γ power in
WTM, which suggests that wortmannin restored the response of
hippocampal γ oscillations to DA in HRM. Neither wortmannin
nor wortmannin + DA had any effect on peak frequency of γ

oscillations in HRM (Figure 4F).

DISCUSSION

Our main findings are as follows: (1) DA enhanced γ power in
WTM but not in HRM. (2) MK-801 induced a larger increase
in γ power, occluded the effect of DA in WTM, induced a small
increase in γ power, and partially restored the effect of DA in
HRM. (3) Wortmannin induced a larger increase in γ power,
blocked the effect of DA in WTM, and caused no significant
increase in γ power but largely restored the effect of DA in HRM.

Altered Dopamine Modulation of
Hippocampal Gamma Oscillation in
Heterozygous Reeler Mice
Dopamine at a concentration of 20 or 200 µM increased γ

power in hippocampal slices in WTM, which differs from the
observation that DA at a concentration of 200 µM reduced γ

oscillations induced by carbachol in area CA3 of rat hippocampus
(Weiss et al., 2003), suggesting that species difference may exist in
DA modulation of γ oscillations.

In HRM, we demonstrated that in vitro hippocampal γ

oscillation was intact in HRM but that DA modulation of
γ oscillations was impaired. Loss of sensitivity to DA for
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FIGURE 4 | Effect of wortmannin on γ oscillations and dopamine (DA)-mediated γ oscillations in hippocampal CA3 of wild-type mice (WTM) and heterozygous reeler
mice (HRM). (A,C) The original curves of 1-s field potentials after application of carbachol (CCh), wortmannin, and wortmannin + DA recorded in hippocampal CA3
from WTM (A) and HRM (C). (B,D) The power spectra of field potentials after application of CCh, wortmannin, and wortmannin + DA recorded in hippocampal CA3
from WTM (B) and HRM (D) hippocampal slices. (E) The bar graph shows the effects of wortmannin and wortmannin + DA on γ power in WTM and HRM
(*P < 0.05, **P < 0.01). (F) The bar graph shows the effects wortmannin and wortmannin + DA on peak frequency of oscillatory activity recorded in hippocampal
CA3 from WTM and HRM.

hippocampal γ power in HRM may be related to altered densities
of dopaminergic fibers in different brain areas: increased in
the hippocampus but reduced in the ventral tegmental area
and nucleus accumbens in HRM (Nullmeier et al., 2014). The
expression profile of DA receptors in the hippocampus of HRM

is relatively sparse but decreased D1 and D2 receptors in the
striatum (Matsuzaki et al., 2007) or altered expression pattern
of D2R in different brain areas: An increased expression in the
striatum but decreased expression in the frontal cortex (Varela
et al., 2015) was reported.
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Blocking N-Methyl-D-Aspartate
Receptor Partially Restores Dopamine
Sensitivity in Heterozygous Reeler Mice
Clinical symptoms of schizophrenia are associated with altered
cortical neuronal oscillations in γ rhythms. NMDAR antagonists
induce psychotic symptoms in humans and a schizophrenia-like
phenotype in animals (Spencer, 2011; Jadi et al., 2016). In this
study, NMDAR antagonist increased γ power in the hippocampal
slices of WTM, which is in agreement with a previous study
that a single application of the NMDAR antagonist MK-801 in
rats increased the power and reduced the peak frequency of γ

oscillations (Lemercier et al., 2017).
Compared with WTM, the same dose of MK-801 caused

a relative small increase in γ power in HRM, which may be
related to the possible alteration in the composition of NMDAR
subunits in the hippocampus. It was reported that blocking reelin
secretion increases the NR2B subunit in cultured hippocampal
neurons (Campo et al., 2009). HRM also showed increased NR1
but reduced NR2C in the frontal cortex (van den Buuse et al.,
2012). Additionally, during neural maturation, a marked decrease
in NR1/NR2B receptor participation to NMDAR-mediated
synaptic currents concomitant with the accumulation of reelin at
active synapse was observed in cultured hippocampal neurons,
suggesting that reelin regulates NMDAR surface trafficking and
synaptic subunit composition (Sinagra et al., 2005; Groc et al.,
2007). Reelin also regulates NMDAR function via increased
tyrosine phosphorylation of NR2A and NR2B receptors and
increases NMDAR-mediated synaptic plasticity in the adult
hippocampus (Qiu et al., 2006). These studies indicate that
sufficient reelin is required to control the subunit composition
and function of NMDAR in hippocampal neurons and that reelin
deficiency causes altered composition and reduced function of
NMDAR, which will likely contribute to the altered response of
γ oscillation to MK-801.

In WTM, MK-801 occluded DA-mediated increase in γ power,
indicating that DA enhancement of γ oscillation is through
NMDAR activation. This is in agreement with previous reports
that DA-mediated (Andersson et al., 2012), nicotine-mediated
(Wang et al., 2017), and methamphetamine-mediated (Li et al.,
2019) increase in γ oscillation in rat hippocampus are all involved
in NMDAR activation.

In HRM, MK-801 partially restored DA-mediated response of
γ oscillation. The explanation for this result could be that blunted
DA modulation of γ oscillations by overactivation of NMDAR
in HRM may be attenuated by MK-801, as observed in the case
that intensive NMDAR activation mediated nicotine (100 µM)
inhibition of γ oscillations (Wang et al., 2017). However, reduced
NMDAR-dependent synaptic long-term potentiation in HRM
(Iafrati et al., 2014) suggests that NMDAR activity may be at a
relative low level in HRM. Although detailed mechanisms for the
partial restoration of DA enhancement of γ power remain to be
further studied, our results are supported by the observation that
NMDAR antagonists, ketamine or Ro25-6981 (selective inhibitor
of GluN2B), restored synaptic and memory function in HRM
(Iafrati et al., 2014). The similar roles between Ro25-6981 and
ketamine in HRM imply that correcting NMDAR composition

from an immature form (GluN2B) to mature form (GluN2A) is
important in recovering normal synaptic transmission in HRM.
One study showed that MK-801 altered subunits of NMDAR in
the young adult rat prefrontal cortex (Xi et al., 2009), although
it is not known whether MK-801 affects the composition of
NMDARs in the hippocampus in HRM. Interestingly, MK-801
and ketamine not only alter NMDAR composition but also have
a partial agonist effect on D2 receptor (Kapur and Seeman,
2002), which may be critical in DA modulation of γ power,
especially in HRM.

Dopamine alone increased the peak frequency of oscillatory
activity in HRM. This effect was reversed, whereas DA effect on γ

power was partially restored in the presence of MK-801, which
suggests that NMDAR activation is required for DA-mediated
oscillatory frequency.

Blocking Phosphatidylinositol 3-Kinase
Largely Restores the Dopamine
Sensitivity in Heterozygous Reeler Mice
Similar to the effects of MK-801 on γ oscillations, wortmannin,
a PI3K inhibitor, caused a substantial increase in γ power in
WTM and a small, insignificant increase in HRM, indicating
that the endogenous PI3K activity is different between WTM
and HRM and that sensitivity of γ oscillations to PI3K activity
is reduced in HRM.

In WTM, wortmannin was able to occlude DA enhancement
of γ power, which indicates that PI3K is also involved in DA
modulation of γ oscillation. In HRM, DA-mediated response
was largely increased in the presence of wortmannin. Our result
is in agreement with the report that blocking NMDAR and its
downstream signaling molecule, the mTOR, rescued the deficit
of function and behavior in HRM (Iafrati et al., 2014). Studies
also demonstrated that reelin, acting through the PI3K, positively
modulates the activity of mTOR kinase, which is required in
the stimulation of dendrite outgrowth, and activates downstream
proteins, such as the p70S6K, which are known to participate
in the control of protein translation (Jossin and Goffinet, 2007;
Ventruti et al., 2011). Because PI3K is an upstream signaling
molecule of mTOR (Lussier et al., 2016) and a downstream
molecule of NMDAR (Perkinton et al., 2002; Man et al., 2003;
Crossthwaite et al., 2004), it is reasonable to assume that the
restoration of DA enhancement of hippocampal γ oscillations in
HRM in the presence of wortmannin is likely through inhibition
of the NMDAR–PI3K signaling pathway.

As reelin activates PI3K (Beffert et al., 2002) and enhances
synaptic transmission via PI3K-dependent synaptic insertion of
AMPARs in adult hippocampus (Qiu et al., 2006), HRM with Q13

remarkable reelin deficiency may have a low level PI3K activity,
which may explain the blunted response of γ oscillations to
PI3K inhibitor. However, it is unclear how DA modulation of γ

oscillations is largely recovered in the presence of a PI3K inhibitor
in HRM. Although the mechanism of this observation remains
to be further determined, our results with respect to the large
restoration of DA sensitivity in the presence of PI3K inhibitor
nevertheless indicate a possibility on how to correct abnormality
in DA function in HRM.
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The results of this study demonstrated that the altered
DA modulation of γ oscillations in HRM is associated
with dysregulated NMDAR–PI3K signaling, establishing a
link between DA- and NMDAR-mediated signaling, network
oscillations, and reelin, which might be relevant to the field of
schizophrenia research.
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