5 research outputs found

    Ship Shaft Frequency Extraction Based on Improved Stacked Sparse Denoising Auto-Encoder Network

    No full text
    The modulation spectrum of ship radiated noise contains information on shaft frequency, which is an important feature used to identify ships and a key parameter involved in calculating the number of propeller blades. To improve the shaft frequency extraction accuracy, a ship shaft frequency extraction method based on an improved stacked sparse denoising auto-encoder network (SSDAE) is proposed. Firstly, the mathematical model of the ship radiated noise modulation spectrum is built and data simulation is carried out based on this model, combined with the actual ship parameters. Secondly, we trained the SSDAE model using the simulation data and made slight adjustments to this model by using both simulation and measured data to improve it. Finally, the experimental ship modulation spectrum information was input to the SSDAE model for denoising, enhancement, and regression estimation. Accordingly, the shaft frequency was extracted. The simulation and experimental results show that the shaft frequency extraction method based on the improved SSDAE model has high accuracy and good robustness, especially under the conditions of both missing line spectra and noise interference

    Ship Shaft Frequency Extraction Based on Improved Stacked Sparse Denoising Auto-Encoder Network

    No full text
    The modulation spectrum of ship radiated noise contains information on shaft frequency, which is an important feature used to identify ships and a key parameter involved in calculating the number of propeller blades. To improve the shaft frequency extraction accuracy, a ship shaft frequency extraction method based on an improved stacked sparse denoising auto-encoder network (SSDAE) is proposed. Firstly, the mathematical model of the ship radiated noise modulation spectrum is built and data simulation is carried out based on this model, combined with the actual ship parameters. Secondly, we trained the SSDAE model using the simulation data and made slight adjustments to this model by using both simulation and measured data to improve it. Finally, the experimental ship modulation spectrum information was input to the SSDAE model for denoising, enhancement, and regression estimation. Accordingly, the shaft frequency was extracted. The simulation and experimental results show that the shaft frequency extraction method based on the improved SSDAE model has high accuracy and good robustness, especially under the conditions of both missing line spectra and noise interference

    Mechanical Properties and Microscopic Mechanism of Coral Sand-Cement Mortar

    No full text
    The workability and mechanical performance of coral sand-cement mortar (coral mortar, for short) and the modification effects of mineral admixtures on the coral mortar were studied in this paper. The results showed that the strength of coral mortar was lower than that of standard mortar, but the strength of coral mortar was improved by compositing with the mineral admixture, which can be attributed to the improvement of the microstructure and interface transition area. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to explore the microscopic mechanism involved in the mechanical properties, volume stability, and hydration of mortar. The analyses revealed that the internal curing effect of coral sand improved the mechanical properties of mortar and its ability to resist shrinkage. The uneven surface of coral sand formed a meshing state of close combination with the hardened cement mortar, which helped to improve the volume stability of mortar. The Ca2+ and Mg2+ ions from coral sand participated in the hydration reaction of cement, which contributed to generating more hydration products. Moreover, the microaggregate filling and pozzolanic effects of fly ash and slag improved the mechanical properties of coral mortar and resistance to chloride ion diffusion
    corecore