156 research outputs found

    Application of Model-Based Time Series Prediction of Infrared Long-Wave Radiation Data for Exploring the Precursory Patterns Associated with the 2021 Madoi Earthquake

    Get PDF
    Taking the Madoi MS 7.4 earthquake of 21 May 2021 as an example, this paper proposes using time series prediction models to predict the outgoing long-wave radiation (OLR) anomalies and study short-term pre-earthquake signals. Five time series prediction models, including autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM), were trained with the OLR time series data of the aseismic moments in the 5° × 5° spatial range around the epicenter. The model with the highest prediction accuracy was selected to retrospectively predict the OLR values during the aseismic period and before the earthquake in the area. It was found, by comparing the predicted time series values with the actual time series value, that the similarity indexes of the two time series before the earthquake were lower than the index of the aseismic period, indicating that the predicted time series before the earthquake significantly differed from the actual time series. Meanwhile, the temporal and spatial distribution characteristics of the anomalies in the 90 days before the earthquake were analyzed with a 95% confidence interval as the criterion of the anomalies, and the following was found: out of 25 grids, 18 grids showed anomalies—the anomalies of the different grids appeared on similar dates, and the anomalies of high values appeared centrally at the time of the earthquake, which supports the hypothesis that pre-earthquake signals may be associated with the earthquake

    A Simulation Way to Investigate the Reason for Congestion in Urban——A Case Study in Hohhot China

    Get PDF
    In the case of high density traffic flow, traditional traffic data statistical analysis methods, which not only have certain errors and lead to inaccurate data, but also have many limitations such as labor consumption, can no longer meet the demand for traffic analysis. Drones for traffic data, based on an aerial bird\u27s-eye view, no offset, and error-free complete statistics of urban road shooting section of all data, while greatly reducing cost consumption. A multi-dimensional simulation model is established for the UAV data to the Hohhot central urban area\u27s road simulation platform. This project will test and explore multidimensional data in the simulation platform to investigate the congestion problem in Hohhot\u27s central city, as well as motor vehicle driving characteristics, non-motor vehicle driving behavior, road setting design, and other aspects, and provide optimization solutions for data-driven intelligent traffic control and management.https://digitalcommons.odu.edu/gradposters2023_engineering/1005/thumbnail.jp

    Fiber absorption measurement errors resulting from re-emission of radiation

    No full text
    We show that errors in the absorption measured in rare-earth-doped fibers can exceed 50% and severely distort the spectral shape. This is a result of re-emission in fibers with overlapping absorption and emission spectra

    Effect of superabsorbent polymer on mechanical properties of cement stabilized base and its mechanism

    Get PDF
    Superabsorbent polymers (SAPs) are cross-linked polymers that can absorb and retain large amounts of water. In recent years, a growing interest was seen in applying SAPs in concrete to improve its performance due to its efficiency in mitigating shrinkage. This paper presents findings in a study on effect of SAPs on performance of cement-treated base (CTB), using the experience of internal curing of concrete. CTB specimens with and without SAPs were prepared and tested in the laboratory. Tests conducted include mechanical property testing, dry shrinkage testing, differential thermal analysis, mercury intrusion porosimetry and scanning electron microscope testing. It was found that 7-day and 28-day unconfined compressive strength of CTB specimens with SAPs was higher than regular CTB specimens. 28d compressive strength of CTB specimens with SAPs made by Static pressure method was 5.87 MPa, which is 27% higher than that of regular CTB specimens. Drying shrinkage of CTB specimens with SAPs was decreased by 52.5% comparing with regular CTB specimens. Through the microstructure analysis it was found that CTB specimens with SAPs could produce more hydration products, which is also the reason for the strength improvement

    Registered ABE via Predicate Encodings

    Get PDF
    This paper presents the first generic black-box construction of registered attribute-based encryption (Reg-ABE) via predicate encoding [TCC\u2714]. The generic scheme is based on kk-Lin assumption in the prime-order bilinear group and implies the following concrete schemes that improve existing results: - the first Reg-ABE scheme for span program in the prime-order group; prior work uses composite-order group; - the first Reg-ABE scheme for zero inner-product predicate from kk-Lin assumption; prior work relies on generic group model (GGM); - the first Reg-ABE scheme for arithmetic branching program (ABP) which has not been achieved previously. Technically, we follow the blueprint of Hohenberger et al. [EUROCRYPT\u2723] but start from the prime-order dual-system ABE by Chen et al. [EUROCRYPT\u2715], which transforms a predicate encoding into an ABE. The proof follows the dual-system method in the context of Reg-ABE: we conceptually consider helper keys as secret keys; furthermore, malicious public keys are handled via pairing-based quasi-adaptive non-interactive zero-knowledge argument by Kiltz and Wee [EUROCRYPT\u2715]

    Registered Attribute-Based Signature

    Get PDF
    This paper introduces the notion of registered attribute-based signature (registered ABS). Distinctly different from classical attribute-based signature (ABS), registered ABS allows any user to generate their own public/secret key pair and register it with the system. The key curator is critical to keep the system flowing, which is a fully transparent entity that does not retain secrets. Our results can be summarized as follows. -This paper provides the first definition of registered ABS, which has never been defined. -This paper presents the first generic fully secure registered ABS over the prime-order group from kk-Lin assumption under the standard model, which supports various classes of predicate. -This paper gives the first concrete registered ABS scheme for arithmetic branching program (ABP), which achieves full security in the standard model. Technically, our registered ABS is inspired by the blueprint of Okamoto and Takashima[PKC\u2711]. We convert the prime-order registered attribute-based encryption (registered ABE) scheme of Zhu et al.[ASIACRYPT\u2723] via predicate encoding to registered ABS by employing the technique of re-randomization with specialized delegation, while we employ the different dual-system method considering the property of registration. Prior to our work, the work of solving the key-escrow issue was presented by Okamoto and Takashima[PKC\u2713] while their work considered the weak adversary in the random oracle model

    Registered Functional Encryptions from Pairings

    Get PDF
    This work initiates the study of concrete registered functional encryption (Reg-FE) beyond ``all-or-nothing\u27\u27 functionalities: - We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairings. The scheme achieves adaptive IND-security under kk-Lin assumption in the prime-order bilinear group. A minor modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from kk-Lin assumption. Prior work achieves the same security in the generic group model. -We build the first Reg-FE for quadratic function (Reg-QFE) from pairings. The scheme achieves very selective simulation-based security (SIM-security) under bilateral kk-Lin assumption in the prime-order bilinear group. Here, ``very selective\u27\u27 means that the adversary claims challenge messages, all quadratic functions to be registered and all corrupted users at the beginning. Besides focusing on the compactness of the master public key and helper keys, we also aim for compact ciphertexts in Reg-FE. Let LL be the number of slots and nn be the input size. Our first Reg-IPFE has weakly compact ciphertexts of size O(nlogL)O(n\cdot\log L) while our second Reg-QFE has compact ciphertexts of size O(n+logL)O(n+\log L). Technically, for our first Reg-IPFE, we employ nested dual-system method within the context of Reg-IPFE; for our second Reg-QFE, we follow Wee\u27s ``IPFE-to-QFE\u27\u27 transformation [TCC\u27 20] but devise a set of new techniques that make our pairing-based Reg-IPFE compatible. Along the way, we introduce a new notion named Pre-Constrained Registered IPFE which generalizes slotted Reg-IPFE by constraining the form of functions that can be registered

    Quantitative assessment of myelin density using [C-11]MeDAS PET in patients with multiple sclerosis:a first-in-human study

    Get PDF
    Purpose: Multiple sclerosis (MS) is a disease characterized by inflammatory demyelinated lesions. New treatment strategies are being developed to stimulate myelin repair. Quantitative myelin imaging could facilitate these developments. This first-in-man study aimed to evaluate [11C]MeDAS as a PET tracer for myelin imaging in humans. Methods: Six healthy controls and 11 MS patients underwent MRI and dynamic [11C]MeDAS PET scanning with arterial sampling. Lesion detection and classification were performed on MRI. [11C]MeDAS time-activity curves of brain regions and MS lesions were fitted with various compartment models for the identification of the best model to describe [11C]MeDAS kinetics. Several simplified methods were compared to the optimal compartment model. Results: Visual analysis of the fits of [11C]MeDAS time-activity curves showed no preference for irreversible (2T3k) or reversible (2T4k) two-tissue compartment model. Both volume of distribution and binding potential estimates showed a high degree of variability. As this was not the case for 2T3k-derived net influx rate (Ki), the 2T3k model was selected as the model of choice. Simplified methods, such as SUV and MLAIR2 correlated well with 2T3k-derived Ki, but SUV showed subject-dependent bias when compared to 2T3k. Both the 2T3k model and the simplified methods were able to differentiate not only between gray and white matter, but also between lesions with different myelin densities. Conclusion: [11C]MeDAS PET can be used for quantification of myelin density in MS patients and is able to distinguish differences in myelin density within MS lesions. The 2T3k model is the optimal compartment model and MLAIR2 is the best simplified method for quantification. Trial registration. NL7262. Registered 18 September 2018

    SARS-CoV-2-Specific Adaptive Immunity in COVID-19 Survivors With Asthma

    Get PDF
    BackgroundAsthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear.MethodsCOVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects.ResultsThe strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188; and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002; and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003; and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485; all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up.ConclusionThe level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune
    corecore